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Abstract. The notion of robustness in the context of committee elec-
tions was introduced by Bredereck et al. [SAGT 2018] [2] to capture the
impact of small changes in the input preference orders, depending on
the voting rules used. They show that for certain voting rules, such as
Chamberlin-Courant, checking if an election instance is robust, even to
the extent of a small constant, is computationally hard. More specifically,
it is NP-hard to determine if one swap in any of the votes can change
the set of winning committees with respect to the Chamberlin-Courant
voting rule. Further, the problem is also W[1]-hard when parameterized
by the size of the committee, k. We complement this result by suggest-
ing an algorithm that is in XP with respect to k. We also show that on
nearly-structured profiles, the problem of robustness remains NP-hard.
We also address the case of approval ballots, where we show a hardness
result analogous to the one established in [2] about rankings and again
demonstrate an XP algorithm.

Keywords: Robustness radius · Chamberlin-Courant · Single-peaked
Single-crossing · NP-hardness

1 Introduction

A voting rule is a function that maps a collection of preferences over a fixed set of
alternatives to a set of winning options, where each option could be one or more
alternatives—corresponding, respectively, to the scenarios of single-winner and
committee elections. A voting rule is vulnerable to change if small perturbations
in the input profile can cause its outcome to vary wildly. There have been several
notions in the contemporary computational social choice literature that captures
the degree of vulnerablity of various voting rules.

A recent exercise in this direction was carried out in [2], where the notion
of robustness radius was introduced as the minimum number of swaps that was
required between consecutive alternatives to change the outcome of a multiwin-
ner voting rule. We note here that we are implicitly assuming that preferences
are modeled as linear orders over the alternatives, although the notion of swaps
can be defined naturally for the situation where the votes are given by approval
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ballots (each vote indicates the set of approved candidates). In the work of [2],
several voting rules are considered, and efficient algorithms were proposed for
Robustness Radius for many of these rules. On the other hand, for some voting
rules, the problem turned out to be hard: even when the question was to decide
if there is one swap that influences the outcome. This is the motivation for the
present work: we focus on the Chamberlin-Courant voting rule (c.f. Sect. 2 on
Preliminaries for the definition), for which Robustness Radius turns out to
be intractable, and look for exact algorithms on general profiles and ask if the
problem becomes easier to tackle on structured preferences.

Our Contributions. Our first contribution is an explicit XP algorithm (recall that
a problem is XP parameterized by k if there exists an algorithm which solves it
in time O(n)f(k)) for the Robustness Radius problem in the context of the
Chamberlin-Courant voting rule. Recall that it is already NP-hard to determine
if there exists one swap which changes the set of winning committees. Notice
that the natural brute-force approach to check if there are at most r swaps
which affect the set of winning committees is to simply try all possible ways of
executing r swaps and recompute the set of winning committees at every step.
This approach, roughly speaking, requires O((mn)r · mk) time where m,n are
number of candidates and voters (respectively) in the given election instance. We
improve this by suggesting an algorithm whose running time can be bounded by
O�(mk). We show this result for both the Chamberlin-Courant voting rule with
the Borda misrepresentation function as well as for the approval version of the
Chamberlin-Courant voting rule. For the latter, we also show that an analogous
hardness result holds.

On the other hand, we initiate an exploration of whether the Robustness
Radius problem remains hard on structured preferences. We provide some
insights on this issue by demonstrating that the problem remains NP-hard on
“nearly-structured” profiles. In particular, we show that:

1. Determining if the robustness radius of a profile is one for the �1-CC (respec-
tively, �∞-CC) voting rule, with respect to the Borda misrepresentation score,
is NP-hard even when the input profiles are restricted to the six-crossing
domain1 (respectively, the four-crossing domain).

2. Determining if the robustness radius of a profile is one for the �∞-CC voting
rule, with respect to the Borda misrepresentation score, is NP-hard even when
the domain is a four-composite single-peaked domain.

Related Work. The notion of robustness is also captured by other closely related
notions, such as the margin of victory (MoV) [11] and swap bribery [5]. In the
former, the metric of change is the number of voters who need to be influenced,
rather than the total number of swaps. On the other hand, in swap bribery,
the goal is not to simply influence a change in the set of committees, but to
1 We refer the reader to the section on Preliminaries for the definition of �-single-
crossing domains. Some definitions and results are deferred to the full version due
to lack of space and are marked with a (�).
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ensure that a specific committee does or does not win (corresponding to con-
structive and destructive versions of the problem, respectively). We note that
swap bribery has been mostly studied in the context of single-winner voting rules.
Observe that any profile that is a non-trivial Yes-instance of swap bribery is
also a Yes-instance of Robustness Radius with the same budget, but the
converse is not necessarily true. Similarly, any profile that is a Yes-instance of
Robustness Radius is also a Yes-instance of MoV with the same budget, but
again the converse need not be true. However, we remark that in the case of the
Approval-CC voting rule, the notions of Robustness Radius and MoV happen
to coincide. Robustness has also been studied for single-winner voting rules in
earlier work [10].

2 Preliminaries

In this section, we introduce some key definitions and establish notation. For a
comprehensive introduction, we refer the reader to [1,6].

Notation. For a positive integer �, we denote the set {1, . . . , �} by [�]. We first
define some general notions related to voting rules. Let V = {vi : i ∈ [n]} be a
set of n voters and C = {cj : j ∈ [m]} be a set of m candidates. If not mentioned
otherwise, we denote the set of candidates, the set of voters, the number of
candidates, and the number of voters by C, V , m, and n respectively.

Every voter vi has a preference �i which is typically a complete order over
the set C of candidates (rankings) or a subset of approved candidates (approval
ballots). An instance of an election consists of the set of candidates C and the
preferences of the voters V , usually denoted as E = (C, V ). A multiwinner
committee rule R is a function that, given an election E and a committee size k,
outputs a family R(E, k) consisting winning committees of k-sized subsets of C.

We now state some definitions in the context of rankings, although we remark
that analogous notions exist also in the setting of approval ballots. We say voter
vi prefers a candidate x ∈ C over another candidate y ∈ C if x �i y. We denote
the set of all preferences over C by L(C). The n-tuple (�i)i∈[n] ∈ L(C)n of the
preferences of all the voters is called a profile. Note that a profile, in general, is a
multiset of linear orders. For a subset M ⊆ [n], we call (�i)i∈M a sub-profile of
(�i)i∈[n]. For a subset of candidates D ⊆ C, we use P|D to denote the projection
of the profile on the candidates in D alone. A domain is a set of profiles.

Chamberlin-Courant for Rankings. The Chamberlin–Courant voting rule is
based on the notion of a dissatisfaction function or a misrepresentation function
(we use these terms interchangeably). This function specifies, for each i ∈ [m],
a voter’s dissatisfaction from being represented by candidate she ranks in posi-
tion i. A popular dissatisfaction function is Borda, given by αm

B (i) = αB(i) =
i − 1, and this will be our measure of dissatisfaction in the setting of rankings.

We now turn to the notion of an assignment function. Let k be a positive
integer. A k-CC-assignment function for an election E = (C, V ) is a mapping
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Φ: V → C such that ‖Φ(V )‖ = k, where ‖Φ(V )‖ denotes the image of Φ. For a
given assignment function Φ, we say that voter v ∈ V is represented by candidate
Φ(v) in the chosen committee. There are several ways to measure the quality of
an assignment function Φ with respect to a dissatisfaction function α; we use
the following:

1. �1(Φ, α) =
∑

i=1,...,n α(posvi
(Φ(vi))), and

2. �∞(Φ, α) = maxi=1,...,n α(posvi
(Φ(vi))).

Unless specified otherwise, α will be the Borda dissatisfaction function described
above. We are now ready to define the Chamberlin-Courant voting rule.

Definition 1 (Chamberlin-Courant [3]). For � ∈ {�1, �∞}, the �−CC voting
rule is a mapping that takes an election E = (C, V ) and a positive integer k
with k � |C| as its input, and returns the images of all the k-CC-assignment
functions Φ for E that minimizes �(Φ, α).

Chamberlin Courant for Approval Ballots. Recall that an approval vote v on the
set of candidates C is an arbitrary subset Sv of C such that v approves all the
candidates in Sv. We define the misrepresentation score for k-sized commmittee
T for an approval voting profile as the number of voters which do not have any of
their approved candidates in T (i.e. T ∩ Sv = φ). Hence the optimal committees
under approval Chamberlin Courant are the committees which maximize the
number of voters with at least one approved candidate in the winning commit-
tee. This notion of Chamberlin-Courant for the setting of approval ballots was
proposed by [8].

Single Crossing Profiles. A preference profile is said to belong to the single
crossing domain if it admits a permutation of the voters such that for any pair
of candidates a and b, there is an index j[(a, b)] such that either all voters vj

with j < j[(a, b)] prefer a over b and all voters vj with j > j[(a, b)] prefer b over
a, or vice versa. The formal definition is as follows.

Definition 2 (Single Crossing Domain). A profile P = (�i)i∈[n] of n pref-
erences over a set C of candidates is called a single crossing profile if there
exists a permutation σ of [n] such that, for every pair of distinct candidates
x, y ∈ C, whenever we have x �σ(i) y and x �σ(j) y for two integers i and j
with 1 � σ(i) < σ(j) � n, we have x �σ(k) y for every σ(i) � k � σ(j).

We generalize the notion of single-crossing domains to r-single crossing
domains in the following natural way (c.f. [9]): for every pair of candidates
(a, b), instead of demanding one index where the preferences “switch” from
one way to the other, we allow for r such switches. More formally, a profile
is r-single crossing if for every pair of candidates a and b, there exist r indices
j0[(a, b)], j1[(a, b)], . . . jr[(a, b)], jr+1[(a, b)] with j0[(a, b)] = 1 and jr+1[(a, b)] =
n+1, such that for all 1 � i � r+1, all voters vj with ji[(a, b)] � j < ji+1[(a, b)]
are unanimous in their preferences over a and b.
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Robustness Radius. Let R be a multiwinner voting rule. For the given election
E = (C, V ), a committee size k, and an integer r, in the R-Robustness Radius
problem we ask if it is possible to obtain an election E′ by making at most r swaps
of adjacent candidates within the rankings in E (or by introducing or removing
at most r candidates from the approval sets of voters in case of approval ballots)
so that R(E′, k) �= R(E, k).

Parameterized Complexity. We occasionally use terminology from parameterized
complexity, mainly to describe our results in an appropriate context. A parame-
terized problem is denoted by a pair (Q, k) ⊆ Σ∗ ×N. The first component Q is
a classical language, and the number k is called the parameter. Such a problem
is fixed–parameter tractable (FPT) if there exists an algorithm that decides it in
time O(f(k)nO(1)) on instances of size n. On the other hand, a problem is said to
belong to the class XP if there exists an algorithm that decides it in time nO(f(k))

on instances of size n. We refer the reader to [4] for a comprehensive introduction
to parameterized algorithms.

3 XP Algorithms for Robustness Radius

The Robustness Radius problem for the �1-Chamberlin-Courant voting rule
with the Borda dissatisfaction function is known to be in FPT when parameter-
ized by either the number of candidates or the number of voters. For the for-
mer, the approach involves formulating the problem as an ILP and then using
Lenstra’s algorithm. In the case of the latter, the algorithm is based on guessing
all possible partitions of the voters based on their anticipated representatives
and then employing a dynamic programming approach.

In this section, we give a simple but explicit algorithm for the problem which
has a XP running time in k, the committee size. This complements the W[1]-
hardness of the problem when parameterized by k [2]. We establish this result
for both when the votes are rankings as well as when they are approval ballots.
First, we address the case when the votes are rankings.

Theorem 1. On general profiles comprising of rankings over alternatives,
Robustness Radius for the �1-Chamberlin-Courant voting rule with the Borda
dissatisfaction function admits a O�(mk) algorithm, where m is the number of
candidates and k is the committee size.

Proof. We first determine the set of all optimal committees of size k in time
O(mk). Suppose there are at least two committees, say A and B, that are both
optimal. The manner in which this case can be handled is also addressed in [2].
For the sake of completeness, we reproduce the main point here, but in particular
we do not address certain edge cases: for example, a slightly different discussion
is called for if there are less than k candidates in total occupying the top positions
across the votes. We refer the reader to [2] for a more detailed explaination.

Now, note that since A and B are distinct committees, there is at least
one voter v whose Chamberlin-Courant representative with respect to A and
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B are distinct candidates: say ca and cb, respectively. Assume, without loss of
generality, that ca �v cb. Note that swapping the candidate cb so that its rank
in the vote v decreases by one results in a new profile where:

1. the dissatisfication score of the committee B is one less than in the original
profile, and,

2. the dissatisfication score of the committee A is at least its score in the original
profile (indeed; the dissatisfaction score either stays the same or increases if
ca is adjacent to cb in the vote v).

Therefore, when there are at least two optimal committees, it is possible to
change the set of winning committees with only one swap, making this situa-
tion easy to resolve. We now turn to the case when the input profile admits a
unique winning committee A. Our overall approach in this case is the follow-
ing: we “guess” a committee B that belongs to the set of winning committees
after r swaps (note that such a committee must exist if we are dealing with a
Yes-instance). For a fixed choice of B, we determine, greedily, the minimum
number swaps required to make B a winning committee. We now turn to a
formal description of the algorithm.

Recall that a profile Q is said to be within r swaps of a profile P if Q can
be obtained by at most r swaps of consecutive candidates in P. In the following
discussion, we say that a committee B is nearly winning if there exists a profile
Q, within r swaps of P, where B is a winning committee. We refer to Q as the
witness for B. Note that the existence of a nearly winning committee B �= A
characterizes the Yes-instances. Let ΔB,A(P) denote the difference between the
dissatisfaction scores of the committees B and A with respect to the profile P.
We begin by making the following observation.

Proposition 1. Let P and Q be two profiles such that Q can be obtained by
making at most r swaps of consecutive candidates in the profile P. Note that:

ΔB,A(P) − 2r � ΔB,A(Q) � ΔB,A(P) + 2r.

The claim above follows from the fact that if Q is a profile obtained from P
by one swap of consecutive candidates in some vote of P, then it is easy to see
that ΔB,A(P) − 2 � ΔB,A(Q) � ΔB,A(P) + 2. Note that if B is nearly winning,
then ΔB,A(Q) � 0, where Q is the witness profile. We now have a case analysis
based on ΔB,A(P).

Case 1. ΔB,A(P) > 2r. In this case, by Proposition 1, we know that in every
profile Q within r swaps of P, ΔB,A(Q) > 0, which is to say that B will have a
greater Borda dissatisfaction score than A in every profile that is r swaps away
from the input profile. Therefore, in this case, we reject the choice of B as a
potential nearly winning committee.

Case 2. ΔB,A(P) � r. An analogous argument can be used to see that B is in
fact nearly winning in this case. Indeed, any r swaps that improve the ranks of
the candidates in B will result in a profile Q that is within r swaps of P and
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where ΔB,A(Q) � 0. So, B is either nearly winning with witness profile Q, or A
is no longer a winning committee in Q. Therefore, in this situation, we output
Yes.

Case 3. ΔB,A(P) = r + s, 1 � s � r. For a vote v, let A(v) and B(v) denote,
respectively, the candidates from A and B with the highest rank in the vote v.
Further, let dB,A(v) denote the difference between the ranks of B(v) and A(v).
Let W ⊆ V be the subset of votes for which dB,A(v) > 0, and let w1, w2, . . .
denote an ordering of the votes in W in increasing order of these differences. We
now make the following claim.

Proposition 2. There exists a profile Q that is r swaps away from P where
ΔB,A(Q) � 0 if, and only if:

t :=
s∑

i=1

dB,A(wi) � r. (1)

Proof. In the forward direction, suppose (1) holds. Then perform swaps in the
votes w1, . . . , ws so that for any i ∈ [s], the candidate B(wi) is promoted to
the position just above A(wi). In other words, each swap involves B(wi) and
in the profile obtained after the swaps, B(wi) � A(wi) for all i ∈ [s], and the
difference in the ranks of these pairs is exactly one. Note that a total of t swaps
are performed to obtain this profile. Denote this profile by R and note that
ΔB,A(R) = r + s − t − s = r − t (since the last swap made on each vote wi

reduces the gap between the dissatisfaction scores of the two committees by
two). Also, (r − t) is also exactly the number of remaining swaps we can still
make, so a witness profile can be obtained using the argument we made in the
previous case. The proof of the other direction is deferred to a full version due
to lack of space. 	


To summarize, our algorithm in this case identifies and sorts the votes in W ,
and returns Yes if condition (1) holds, and rejects the choice of B otherwise.
Observe that we output No if no choice of B results in a positive outcome
in this case analysis. In terms of the running time, we require O(mk) time in
distinguishing whether we have a unique winning committee or not, and if we
are in the former situation, we need O(mk) time to guess a nearly winning
committee. For each choice B of a potential winning committee, we spend time
O(mn log n) in the worst case to determine if B is indeed a nearly winning
committee. Therefore, hiding polynomial factors, the overall running time of our
algorithm is O�(mk) and this concludes the proof. 	


We now turn to the case of approval ballots. First, we show that the robust-
ness radius problem in this setting remains NP-hard even for determining if the
robustness radius is one, as was true for the case when the votes were rankings.

Theorem 2. Robustness Radius for the Approval Chamberlin-Courant vot-
ing rule is NP-hard, even when the robustness radius is one and each voter
approves at most three candidates. It is also W[2]-hard parameterized by the size
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of the committee when there are no restrictions on the size of the number of
candidates approved by a voter, and the robustness radius is one.

Proof. We reduce from the Hitting Set problem. Note that the NP-hardness
in the restricted setting follows from the fact that Hitting Set is already hard
for sets of size at most two (recall that this is the Vertex Cover problem),
while the W[2]-hardness follows from the fact that Hitting Set is W[2]-hard
when parameterized by the size of the hitting set [4] and our reduction will be
parameter-preserving with respect to the parameter of committee size.

Let (U,F ; k) be an instance of Hitting Set. Recall that this is a Yes-
instance if and only if there exists S ⊆ U , with |S| � k such that S ∩ X �= ∅ for
any X ∈ F . We construct a profile P over alternatives A as follows. Let:

A := {cu | u ∈ U}
︸ ︷︷ ︸

C

∪ {d1, . . . , dk}
︸ ︷︷ ︸

D

Also, for every 1 � i � k, and for every X ∈ F , introduce a vote v(X, i) that
approves the candidates corresponding to the elements in X along with di. This
completes the construction of the instance. We claim that this instance has a
robustness radius of one if and only if (U,F ; k) is a Yes-instance of Hitting
Set.

Forward Direction. Suppose S is a hitting set for (U,F) of size k. Then the
set CS := {cu | u ∈ S} and D are two optimal Approval-CC committees with
dissatisfaction scores of zero each. Note that removing the candidate d1 from any
vote of the form v(X, 1) will lead to a profile where the set of winning committees
contains CS but does not contain D. Hence, the robustness radius is indeed one.

Reverse Direction. For the reverse direction, suppose the profile P has robust-
ness radius one. We will now argue the existence of a hitting set of size at most
k. Note that D is already an optimal committee with respect to P as it has the
best possible Approval-CC dissatisfaction score of zero. Now, suppose P admits
another winning committee W distinct from D. Then notice that the Approval-
CC dissatisfaction score of W must also be zero, and since there is at least one
candidate from D (say di) that is not present in W, it is easy to see that the
candidates in C ∩ W form a hitting set for the instance (U,F ; k)—indeed, note
that every voter in the sub-profile {v(X, i) | X ∈ F} does not approve anyone in
D ∩ W, and therefore must approve someone of in C ∩ W, making this a hitting
set for F .

Therefore, the interesting case is when D is the unique winning committee
for P. We claim that any other subset of candidates W of size k has an Approval-
CC dissatisfaction score of at least two. This would imply that the robustness
radius of P cannot possibly be one, and therefore there is nothing to prove. To
this end, observe that CW := W ∩ C is not a hitting set2 for F : indeed, if CW

2 Note the slight abuse of terminology here: when referring to CW as a hitting set, we
are referring to the elements of U corresponding to the candidates in CW . As long
as this is clear from the context, we will continue to use this convention.



Robustness Radius for Restricted Domains 349

was a hitting set then it is easy to see that W is also an optimal committee with
respect to P, contradicting the case that we are in. Let X denote a set that is
not hit by CW . Now, we consider two cases:

W Omits Two Candidates from D. In this case, there are at least two candidates
in D—say di and dj—who do not belong to W. Then W earns a dissatisfaction
score of one from each of v(X, i) and v(X, j), which makes its dissatisfaction
score at least two, as desired.

W Omits Exactly One Candidate from D. In this case, notice that |CW | = 1
and that CW does not hit at least two sets, say X and Y : else CW along with
an arbitrarily chosen element from X and another chosen from Y , along with
an arbitrary choice of k − 3 additional candidates would constitute a winning
committee in P different from D, again contradicting the case that we are in.
Therefore, observe that di is the candidate from D that is not present in W, the
votes v(X, i) and v(Y, i) contribute one each to the dissatisfaction score of the
committee W .

Overall, therefore, if D is the unique winning committee in P, then the robust-
ness radius is greater than one, and there is nothing to prove. This concludes
our argument in the reverse direction. 	


We now turn to O�(mk) algorithm for Robustness Radius with respect
to approval ballots. The general approach is quite analogous to the setting of
rankings. However, the notion of swaps is slightly different, and the overall case
analysis is, in fact, simpler. Since the main ideas are identical, in the interest of
space, we defer a proof of the following claim to a full version of the paper.

Lemma 1 (�). On general profiles comprising of approval ballots over alter-
natives, Robustness Radius for the �1-Chamberlin-Courant voting rule with
the Borda dissatisfaction function admits a O�(mk) algorithm, where m is the
number of candidates and k is the committee size.

4 Hardness for �-Crossing Profiles

In this section, we explore the complexity of Robustness Radius on nearly-
structured preferences. We discover that the problem remains NP-hard parame-
terized by the size of the committee sought, even on profiles which are 6-crossing
even when the robustness radius is one. We note that our overall approach is
very similar to the one employed in [2].

Theorem 3. Determining if the robustness radius of a profile is one for the
�1-CC voting rule, with respect to the Borda misrepresentation score, is NP-hard
even when the input profiles are restricted to the six-crossing domain.

Proof. We reduce from Independent Set on 3-regular graphs. Let (G, t)
be an Independent Set on 3-regular graphs [7]. We construct a profile
based on G as follows. Our set of candidates C is given by:
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C := {cu | u ∈ V (G)}
︸ ︷︷ ︸

V

∪ {d1, . . . , dh}
︸ ︷︷ ︸

D

∪ {Z0, Z1}
︸ ︷︷ ︸

Z

∪ {x1, . . . , xt+1}
︸ ︷︷ ︸

X

,

where h is a parameter that we will specify in due course. We refer to the
candidates in X as the safe candidates and Z0 & Z1 are two special candidates.
We will use τ denote a subset of Δ many unique dummy candidates, where Δ :=
12nt. Now we describe the votes. Our voters are divided into three categories as
follows:

Special Candidate Votes: This group consists of t + 3 copies of the vote,

Z0 � τ � · · ·

These votes ensure that every winning committee must include Z0.

“Safe Committee” Votes: For each candidate xi we have 18t2

t+1 copies of the
vote:

vxi
:= xi � Z1 � τ � · · ·

Independent Set Votes: For every edge {u, v} in the graph, we introduce 2t
copies of following two votes:

u � v � Z0 � τ � · · ·
v � u � Z0 � τ � · · ·

We denote the block of these 4t votes by Vu,v. The intuition for this is to ensure
that if some committee has both the endpoints of some edge then the overall
misrepresentation will be more than Δ.

The votes described above together constitute our profile P. By fixing an
ordering on C and respecting it on the unspecified votes, it is straightforward
to verify that all pairs of candidates cross at most six times in this profile. We
note that the candidates corresponding to the vertices cross at most six times
because the construction is based on a three regular graph. Define k = t+2 and
r = 1. The �1-CC -Robustness Radius instance thus constructed is given by
(C,P, k = t+2, r = 1). This completes the construction of the instance. We now
make some observations about the nature of the optimal committees which will
help us argue the equivalence subsequently.

Possible Winning Committees. Let T denote the set of candidates corresponding
to t-sized independent set in G (whenever it exists). We refer to the subset of
candidates given by {Z0, x1, x2, . . . , xt+1} as the safe committee and denote it
by S.
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Lemma 2. The constructed profile has a unique winning committee if and only
if the graph G has no independent set of size t. The safe committee S has a
dissatisfaction score of Δ and is always a winning committee. If (G, t) is a Yes
instance, then {Z0, Z1} ∪ T is also an optimal committee, where T denotes an
independent set of size t in G. Further, any k-sized committee not of this form
will have dissatisfaction strictly greater than Δ + 1.

Proof. It is easy to see that the dummy candidate will not appear in any optimal
committee, since it appears in the top Δ positions for exactly one vote.

Let us compute the dissatisfaction score for the two proposed committees. For
the safe committee, we get zero dissatisfaction from the special candidate votes
and safe committee votes and we get 8t dissatisfaction for each edge which gives
us a total dissatisfaction score of 8t · 3n

2 = 12nt = Δ. For the committee based
on the independent set, we get zero dissatisfaction from the special candidate
votes, 18t2 from the safe committee votes (one per vote) and (3n

2 − 3t) · 8t + 3t ·
2t = 12nt − 18t2 from the independent set detector votes. Hence, for both the
committees the total dissatisfaction is Δ. It is easy to see that this is the best
possible dissatisfaction score that can be achieved by any committee of size k.

Note that any optimal winning committee will have candidate Z0 otherwise,
one has to pick k+1 dummy candidates (to remain optimal), which would exceed
the committee size. With Z0 in optimal committee if we intend to choose only
few of x′

is then candidate Z1 is forced in the committee. With these constraints,
now, we only have two possible structures for any optimal committee. We will
analyze both in next part of the proof.

Consider the possible optimal committees which picks Z0, Z1, few endpoints
of edges which are covered twice and the partial independent set (set of vertices
which only has one endpoint with given edge). The edges for which both the end-
points are in committee gives zero dissatisfaction, edges for which one endpoint
lies in committee gives 2t dissatisfaction and edges for which both the endpoints
are not in committees gives 8t dissatisfaction. Hence, the non-uniformity in dis-
satisfaction clearly indicates that it is better to cover maximum number of edges
by picking one end-point rather than completely losing an edge which causes
very high dissatisfaction. So, with the remaining budget for t-candidates, the
committee with all candidates from independent set will cover maximum edges
(to represent by one endpoint) and will cause strictly less dissatisfaction from
any other committee by at least 2t points.

We now consider a possible winning committee which contains Z0, Z1, par-
tial independent set and x′

is for the remaining budget. Let’s compute the dis-
satisfaction for this committee. Say we pick p candidates among the x′

is and
(k − 2− p) = (t− p) candidates from the independent set. The dissatisfaction is:

(t + 1 − p) · 18t2

t + 1
+

(
3n

2
− 3(t − p)

)

· 8t + (3 · (t − p) · 2t)

which simplifies to: Δ + (t − p)
(

18t2

t+1 − 18t

)

+ 18t2

t+1 .
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For any value of t, it is straightforward to verify the above expression has
value strictly greater than Δ+1. Hence, committees with this structure will also
not be optimal, and this proves the claim. 	


Now, we turn to the equivalence of the two instances.

Forward Direction. We need to show that the existence of t-sized independent
set in the graph implies the existence of one swap of adjacent candidates which
changes the set of winning committees for the new election instance. From the
above claim we know that when there exist a t-sized independent set T, we have
two winning committees. In this election instance consider the swap of Z1 with a
dummy candidate on right in any of the safe committee votes. Now the score for
{Z0, Z1}∪T is Δ+1 and it’s not optimal anymore. Hence, we have changed the
set of winning committees. This completes the argument for forward direction.

Reverse Direction. From Lemma 2, we know that unless independent set exists
any k-candidate committee other than the safe committee has dissatisfaction
score strictly greater than Δ + 1. This implies there does not exist any swap
which can introduce a new committee in winning committee set (since a single
swap can change the score of any committee by at most one) or can knock off
safe committee from the set. Hence, in this case robustness radius equal to one
forces the existence of required independent set (since this is the only committee
that can change the set of winning committees). This concludes the proof. 	


We remark that an analogous result can be established for the �∞-CC voting
rule as well, but exclude the proof due to lack of space.

5 Concluding Remarks and Open Problems

We demonstrated XP algorithms for the Robustness Radius problem, when
parameterized by the size of the committee, for both the �1-CC and the Approval-
CC voting rules, using a greedy approach. This complements the known W[1]-
hardness of the problem with respect to this parameter. We also explicitly estab-
lish the W[2]-hardness of Robustness Radius for the Approval-CC voting
rule when parameterized by the size of the committee, even when every voter
approves at most three candidates, and when the robustness radius is one. We
also established that Robustness Radius for the �1-CC and �∞-CC voting
rules remains intractable on fairly structured preferences, such as six-crossing
profiles.

A natural direction for further thought is if our XP algorithm can be improved
to a better running time, especially on structured profiles such as single-peaked or
single-crossing domains. A tempting approach is to see if we can exploit the fact
that optimal Chamberlin-Courant committees can be computed in polynomial
time on these domains. One immediate challenge is the following: if we require
our swaps to be such that the resulting profile also remains in the domain that
we are working on, then the case when the input profile has multiple winning
committees is harder to decide: we can no longer push a committee out of the
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winning set with one swap, because the said swap may disturb the structure
of the profile. We also believe that instead of guessing all possible choices for a
nearly winning committee B, on structured profiles one might be able to cleverly
anticipate the right choice of B without trying all of them.
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