Robustness Radius for Chamberlin-Courant on Restricted Domains

Chinmay Sonar Neeldhara Misra

Indian Institute of Technology Gandhinagar

Presented by: Prof. Henning Fernau

January 27, 2019

 Given preferences of n voters over m candidates, our task is to aggregate the preferences to output a committee of size k

・ロト・日本・モト・モー ヨー つへで

Multiwinner Elections

 Given preferences of n voters over m candidates, our task is to aggregate the preferences to output a committee of size k

- Preferences can be represented in many ways, we consider:
 - 1 Complete strict orderings
 - **2** Approval ballots ((m)-length binary vector)

Multiwinner Elections

- Given preferences of n voters over m candidates, our task is to aggregate the preferences to output a committee of size k
- Preferences can be represented in many ways, we consider:
 - **1** Complete strict orderings
 - **2** Approval ballots ((*m*)-length binary vector)
- Let $C \to \text{set of } m$ candidates, $V \to \text{set of all voters and} \mathcal{L}(C) \to \text{set of all preferences over } C$. A multiwinner committee rule \mathcal{R} is *function* s.t.,

$$f: (\mathcal{L}(C)^n, k) \to \mathcal{R}(E, k)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where *E* represents election E = (C, V) and $\mathcal{R}(E, k)$ is the family of *k*-sized subsets of *C*.

Multiwinner Elections

- Given preferences of n voters over m candidates, our task is to aggregate the preferences to output a committee of size k
- Preferences can be represented in many ways, we consider:
 - 1 Complete strict orderings
 - **2** Approval ballots ((*m*)-length binary vector)
- Let $C \to \text{set of } m$ candidates, $V \to \text{set of all voters and} \mathcal{L}(C) \to \text{set of all preferences over } C$. A multiwinner committee rule \mathcal{R} is *function* s.t.,

$$f: (\mathcal{L}(C)^n, k) \to \mathcal{R}(E, k)$$

where *E* represents election E = (C, V) and $\mathcal{R}(E, k)$ is the family of *k*-sized subsets of *C*.

For this work, we consider *Chamberlin Courant* voting rule.

Example: Finding a collection of movies to include in Airplane

$$n = 4, m = 5, k = 2$$

Figure: Approval Ballots

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

¹Piotr Faliszewski: rapc-session-3-committees.pptx

Definition: For multiwinner voting rule \mathcal{R} , and input E = (C, V), a committee k and an integer r, we ask if it is possible to obtain an election E' by making at most r swaps of adjacent candidates within rankings of E (or change at most k-bits for the case of approval ballots) s.t. $\mathcal{R}(E, k) \neq \mathcal{R}(E, k)$

Definition: For multiwinner voting rule \mathcal{R} , and input E = (C, V), a committee k and an integer r, we ask if it is possible to obtain an election E' by making at most r swaps of adjacent candidates within rankings of E (or change at most k-bits for the case of approval ballots) s.t. $\mathcal{R}(E, k) \neq \mathcal{R}(E, k)$

• YES
$$\rightarrow RR \leqslant r$$

• NO $\rightarrow RR > r$

Related Work

 'Robustness Among Multiwinner Voting Rules' [SAGT'18]² – First defined the concept of RR

²Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., & Talmon, N. (2017, September). Robustness among multiwinner voting rules. In International Symposium on Algorithmic Game Theory (pp. 80-92). Springer, Cham.

Related Work

- 'Robustness Among Multiwinner Voting Rules' [SAGT'18]² First defined the concept of RR
- The paper considers the problem of RR for many voting rules (SNTV, k-Bloc, Copeland, NED, STV and CC) and shows many polynomial time results, but shows the hardness for CC.

э

²Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., & Talmon, N. (2017, September). Robustness among multiwinner voting rules. In International Symposium on Algorithmic Game Theory (pp. 80-92). Springer, Cham.

Related Work

- 'Robustness Among Multiwinner Voting Rules' [SAGT'18]² First defined the concept of RR
- The paper considers the problem of RR for many voting rules (SNTV, k-Bloc, Copeland, NED, STV and CC) and shows many polynomial time results, but shows the hardness for CC.
- We consider the exact algorithms for hard instances and ask the question on restricted domain for **CC** rule

²Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., & Talmon, N. (2017, September). Robustness among multiwinner voting rules. In International Symposium on Algorithmic Game Theory (pp. 80-92). Springer, Cham.

Similar Notions

 RR captures the impact of small changes in the input preferences on the set of the winning committees for given voting rule.

³Elkind, E., Faliszewski, P., & Slinko, A. (2009, October). Swap bribery. In International Symposium on Algorithmic Game Theory (pp. 299-310). Springer, Berlin, Heidelberg:

Similar Notions

- RR captures the impact of small changes in the input preferences on the set of the winning committees for given voting rule.
- MoV (Margin of Victory) It measures the number of voters to be changed rather than the number of swaps. Hence MoV is more powerful model than RR.

³Elkind, E., Faliszewski, P., & Slinko, A. (2009, October). Swap bribery. In International Symposium on Algorithmic Game Theory (pp. 299-310). Springer, Berlin, Heidelberg:

Similar Notions

- RR captures the impact of small changes in the input preferences on the set of the winning committees for given voting rule.
- MoV (Margin of Victory) It measures the number of voters to be changed rather than the number of swaps. Hence MoV is more powerful model than RR.
- Swap Bribery Also cares about the outcome after the change in profile ³.

³Elkind, E., Faliszewski, P., & Slinko, A. (2009, October). Swap bribery. In International Symposium on Algorithmic Game Theory (pp. 299-310). Springer, Berlin, Heidelberg:

Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.

Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.

 Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.
 Ex. Borda: α^m_B(i) = α_B(i) = i - 1 Note that for approval ballots, α_B(i) = 0 ⇔ i ∈ (Approval set); 1 otherwise.

- Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.
 Ex. Borda: α^m_B(i) = α_B(i) = i-1 Note that for approval ballots, α_B(i) = 0 ⇔ i ∈ (Approval set); 1 otherwise.
- Assignment function: *k*-*CC*-assignment function for an election E = (C, V) is a mapping $\Phi: V \to C$ such that $|\Phi(V)| \leq k$

シロシ 4月 > 4 三 > 4 三 > 1 の 4 円 > 1 の 4 回 >

- Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.
 Ex. Borda: α^m_B(i) = α_B(i) = i-1 Note that for approval ballots, α_B(i) = 0 ⇔ i ∈ (Approval set); 1 otherwise.
- Assignment function: *k*-*CC*-assignment function for an election E = (C, V) is a mapping $\Phi: V \to C$ such that $|\Phi(V)| \leq k$

シロシ 4月 > 4 三 > 4 三 > 1 の 4 円 > 1 の 4 回 >

- Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.
 Ex. Borda: α^m_B(i) = α_B(i) = i 1 Note that for approval ballots, α_B(i) = 0 ⇔ i ∈ (Approval set); 1 otherwise.
- Assignment function: *k*-*CC*-assignment function for an election E = (C, V) is a mapping $\Phi: V \to C$ such that $|\Phi(V)| \leq k$
- Aggregation Function: Used to measure the quality of Assignment Function. We use following two in our work:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.
 Ex. Borda: α^m_B(i) = α_B(i) = i 1 Note that for approval ballots, α_B(i) = 0 ⇔ i ∈ (Approval set); 1 otherwise.
- Assignment function: *k*-*CC*-assignment function for an election E = (C, V) is a mapping $\Phi: V \to C$ such that $|\Phi(V)| \leq k$
- Aggregation Function: Used to measure the quality of Assignment Function. We use following two in our work:

•
$$\ell_1 = \sum_{i=1,...,n} \alpha(\text{pos}_{v_i}(\Phi(v_i)))$$
, and

- Misrepresentation function: For an *m*-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.
 Ex. Borda: α^m_B(i) = α_B(i) = i 1 Note that for approval ballots, α_B(i) = 0 ⇔ i ∈ (Approval set); 1 otherwise.
- Assignment function: *k*-*CC*-assignment function for an election E = (C, V) is a mapping $\Phi: V \to C$ such that $|\Phi(V)| \leq k$
- Aggregation Function: Used to measure the quality of Assignment Function. We use following two in our work:

$$l_1 = \sum_{i=1,\dots,n} \alpha(\operatorname{pos}_{v_i}(\Phi(v_i))), \text{ and }$$

 $\ell_{\infty}(\Phi) = \max_{i=1,\dots,n} \alpha(\operatorname{pos}_{v_i}(\Phi(v_i)))$

Chamberlin Courant Example:

Consider the committee:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(considering ℓ_1 dis-satisfaction) Note: Figure is taken from $[1]^4$

⁴Piotr Faliszewski: rapc-session-3-committees.ppt×

Chamberlin Courant-rule

For given dissatisfaction function (α) and aggregation function (ℓ) , the α - ℓ -CC voting rule is a mapping that takes an election E = (C, V) and a positive integer k with $k \leq |C|$ as its input, and returns a k-CC-assignment function Φ for E that minimizes $\ell(\Phi)$. ⁵

⁵Chamberlin & Courant: Representative deliberations and representative decisions

⁶Betzler, Slinko & Uhlmann: On the Computation of Fully Proportional Representation 🕢 🚊 🔷 🖓

Parameterized Complexity

Parameterized problem is denoted as $(Q, k) \subseteq \Sigma^* \times \mathbb{N}$ where Q is a classical language and k is the parameter

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 Parameterized problem is denoted as (Q,k) ⊆ Σ* × N where Q is a classical language and k is the parameter
 FPT → if ∃ algorithm that decides in time O(f(k)n^{O(1)})

- Parameterized problem is denoted as $(Q, k) \subseteq \Sigma^* \times \mathbb{N}$ where Q is a classical language and k is the parameter
- FPT \rightarrow if \exists algorithm that decides in time $\mathcal{O}(f(k)n^{\mathcal{O}(1)})$

• XP \rightarrow if \exists algorithm that decides in time $\mathcal{O}(n^{f(k)})$

Results Summary

Note: All results are parameterized by parameter k- the size of the committee.

- For general profiles:
 - 1 RR is W[2]-hard for Approval Chamberlin-Courant.
 - **2** XP algorithm for determining RR for *complete rankings/ approval ballots.*

Note: All results are parameterized by parameter k- the size of the committee.

- For general profiles:
 - 1 RR is W[2]-hard for Approval Chamberlin-Courant.
 - **2 XP** algorithm for determining **RR** for *complete rankings/ approval ballots.*
- On nearly restricted domain:
 - **1 RR** is **NP**-hard for $\ell_1 CC$ even for *6-crossing* domains.
 - **2 RR** is **NP**-hard for $\ell_{\infty} CC$ even for 4-crossing domains.
 - **3 RR** is **NP**-hard for $\ell_{\infty} CC$ even for 4-composite SP domains.

Hardness for Approval Ballots

Theorem

Checking if RR=1 for Approval Chamberlin Courant is W[2] hard parameterized by size of committee (k).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

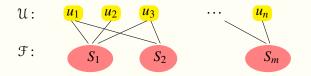
Hardness for Approval Ballots

Theorem

Checking if RR=1 for Approval Chamberlin Courant is W[2] hard parameterized by size of committee (k).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Reduction Hitting Set instance.



 $\forall S_i \in \mathcal{F}; S_i \subseteq \mathcal{U}$ Given k, does there exist $S \subseteq U$ s.t. $|S \cap S_i| \neq \phi \& |S| \leq k$

・ロト ・四ト ・ヨト ・ヨー うくぐ

```
\mathcal{U} = \{1, 2, 3, 4\}
\mathcal{F} = \{(1, 2, 3), (1, 2), (3, 4), (2, 4), (1, 4)\}
k = 1
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

NO instance

 $\mathcal{U} = \{1, 2, 3, 4\}$ $\mathcal{F} = \{(1, 2, 3), (1, 2), (3, 4), (2, 4), (1, 4)\}$ k = 2 $S = \{1, 2\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hitting Set Instance:

 $\begin{aligned} &\mathcal{U} = \{1, 2, 3, 4\} \\ &\mathcal{F} = \{(1, 2, 3), (1, 2), (3, 4), (2, 4), (1, 4)\} \\ &|\mathcal{U}| = n \\ &k = 2 \text{ (size of the hitting set)} \end{aligned}$

Hitting Set Instance:

 $U = \{1, 2, 3, 4\}$ $\mathcal{F} = \{(1, 2, 3), (1, 2), (3, 4), (2, 4), (1, 4)\}$ |U| = nk = 2 (size of the hitting set)

RR Instance for Approval Voting Rule:

$$k' = k \text{ (Committee size)} \\ \mathcal{A} := \underbrace{\{c_1, c_2, \dots, c_n\}}_{\mathcal{U}} \cup \underbrace{\{d_1, d_2, \dots, d_k\}}_{\mathcal{D}}$$

Hitting Set Instance:

 $U = \{1, 2, 3, 4\}$ $\mathcal{F} = \{(1, 2, 3), (1, 2), (3, 4), (2, 4), (1, 4)\}$ |U| = n = 4k = 2 (size of the hitting set)

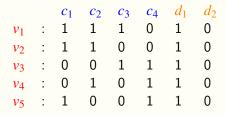
RR Instance for Approval Voting Rule:

$$k' = k = 2 \text{ (Committee size)}$$
$$\mathcal{A} := \underbrace{\{c_1, c_2, c_3, c_4\}}_{\mathcal{U}} \cup \underbrace{\{d_1, d_2\}}_{\mathcal{D}}$$

Construction

Hitting Set Instance: $\mathcal{U} = \{1, 2, 3, 4\}$ $\mathcal{F} = \{(1, 2, 3), (1, 2), (3, 4), (2, 4), (1, 4)\}$ k = 2 (size of the hitting set)

RR Instance for Approval Voting Rule: k' = k = 2 (Committee size) $\mathcal{A} := \{c_1, c_2, c_3, c_4\} \cup \{d_1, d_2\}$ Voting profile:



Construction

Hitting Set Instance:

 $\mathcal{U} = \{1, 2, 3, 4\}$ $\mathcal{F} = \{(1, 2, 3), (1, 2), (3, 4), (2, 4), (1, 4)\}$ k = 2 (size of the hitting set)

RR Instance for Approval Voting Rule: k' = k = 2 (Committee size) $\mathcal{A} := \{c_1, c_2, c_3, c_4\} \cup \{d_1, d_2\}$ Voting profile:

		c_1	c_2	с3	c_4	d_1	d_2			c_1	c_2	с3	c_4	d_1	d_2
v_1	:	1	1	1	0	1	0	v_1	:	1	1	1	0	0	1
v_2	:	1	1	0	0	1	0	v_2	:	1	1	0	0	0	1
<i>v</i> ₃	:	0	0	1	1	1	0	<i>v</i> ₃	:	0	0	1	1	0	1
v_4	:	0	1	0	1	1	0	v_4	:	0	1	0	1	0	1
V5	:	1	0	0	1	1	0	V5	:	1	0	0	1	0	1

Forward Direction:

- 'YES' instance of HS
 - \implies at least 2, 2-sized winning committees
 - (one by candidates corresponding to Hitting Set and the other is trivial committee by dummy candidates)

Forward Direction:

- 'YES' instance of HS
 - \implies at least 2, 2-sized winning committees
 - (one by candidates corresponding to Hitting Set and the other is trivial committee by dummy candidates)

Both the committees have dis-satisfaction score of 0, hence optimal.

Forward Direction:

- 'YES' instance of HS
 - \implies at least 2, 2-sized winning committees

(one by candidates corresponding to Hitting Set and the other is trivial committee by dummy candidates)

- Both the committees have dis-satisfaction score of 0, hence optimal.
- We make entry (v₁, d₁) = 0 to knock off committee (d₁, d₂) from the winning set since the mis-representation score for this committee is now 1.

Forward Direction:

- 'YES' instance of HS
 - \implies at least 2, 2-sized winning committees

(one by candidates corresponding to Hitting Set and the other is trivial committee by dummy candidates)

- Both the committees have dis-satisfaction score of 0, hence optimal.
- We make entry (v₁, d₁) = 0 to knock off committee (d₁, d₂) from the winning set since the mis-representation score for this committee is now 1.

Hence RR=1.

If there is more than one winning committee in the constructed election, then there exists a hitting set of size at most k.

If RR = 1 for the constructed election, then there are at least two winning committees of size k.

 \Downarrow

If RR = 1 for the constructed election, the instance of HS on which the election is based is a YES-instance.

If there is more than one winning committee in the constructed election, then there exists a hitting set of size at most k.

If there is exactly one winning committee in the constructed election, then any other committee has a dissatisfaction score of at least two.

∜

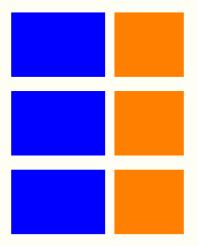
If RR = 1 for the constructed election, the instance of HS on which the election is based is a YES-instance.

If there is more than one winning committee in the constructed election, then there exists a hitting set of size at most k.

If there is exactly one winning committee in the constructed election, then any other committee has a dissatisfaction score of at least two.

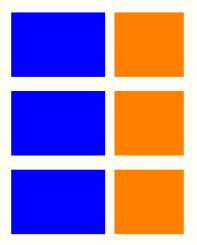
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 $c_1 \quad c_2 \quad \cdots \quad c_n \quad d_1 \quad \cdots \quad d_k$



Let W be another winning committee different from D.

 $c_1 \quad c_2 \quad \cdots \quad c_n \quad d_1 \quad \cdots \quad d_k$



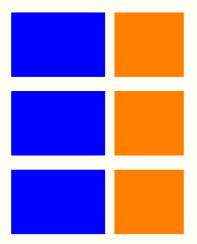
Let W be another winning committee different from D.

Score(W) = Score(D)

i.e. every voter has a representative in \boldsymbol{W}

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへの

 $c_1 \quad c_2 \quad \cdots \quad c_n \quad d_1 \quad \cdots \quad d_k$



Let W be another winning committee different from D.

Score(W) = Score(D)

i.e. every voter has a representative in \boldsymbol{W}

W omits some candidate from D, say d_i .

Let W be another winning committee different from D.

Score(W) = Score(D)i.e. every voter has a representative in W

W omits some candidate from D, say d_i .

Consider block corresponding to d_i .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Let W be another winning committee different from D.

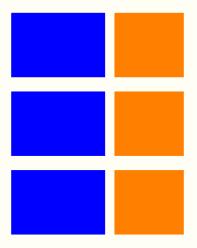
Score(W) = Score(D)i.e. every voter has a representative in W

W omits some candidate from D, say d_i .

Consider block corresponding to d_i .

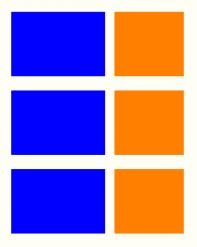
Here, every voter (set) is represented by a non-dummy candidate. Hence, $W \setminus D$ corresponds to a hitting set.

 $c_1 \quad c_2 \quad \cdots \quad c_n$

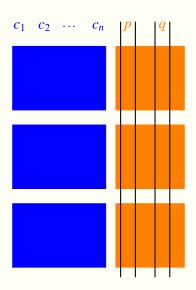


Suppose D is the only committee that represents every voter.

 $c_1 \quad c_2 \quad \cdots \quad c_n$



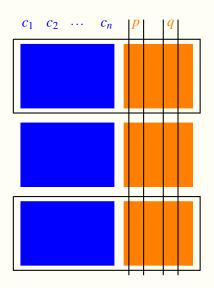
Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.



Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits two candidates from D, say p and q.

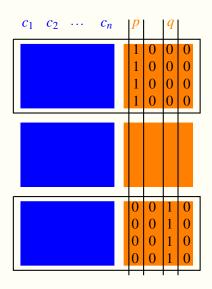
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits two candidates from D, say p and q. Consider the voter blocks corresponding to p and q.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

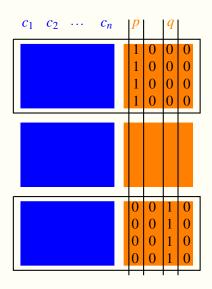


Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits two candidates from D, say p and q. Consider the voter blocks corresponding to p and q.

Since $W \setminus D$ is not a hitting set^{*}, there is at least one voter in each block that is not represented by W in each block.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

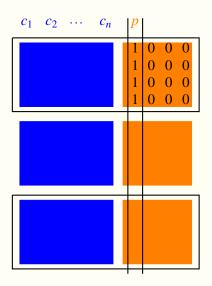


Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits two candidates from D, say p and q. Consider the voter blocks corresponding to p and q.

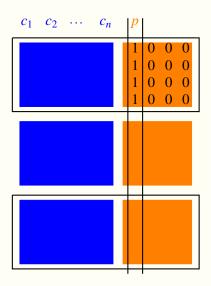
Since $W \setminus D$ is not a hitting set^{*}, there is at least one voter in each block that is not represented by W in each block.

Hence the dissatisfaction of W is at least 2. (done)



Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

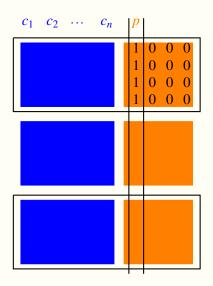
Suppose W omits one candidate from D, say p.



Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits one candidate from D, say p.

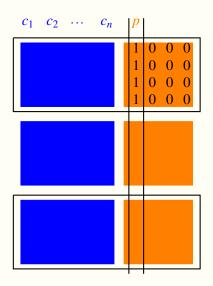
Consider the block corresponding to \boldsymbol{p}



Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits one candidate from D, say p.

Since $W \setminus D$ is not a hitting set^{*}, there is at least one voter that is not represented by W is p's block.

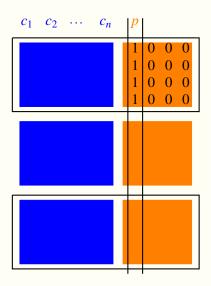


Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits one candidate from D, say p.

Since $W \setminus D$ is not a hitting set^{*}, there is at least one voter that is not represented by W is p's block.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

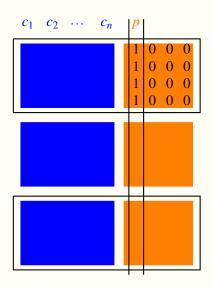


Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits one candidate from D, say p.

Since $W \setminus D$ is not a hitting set^{*}, there are at least two voters that is not represented by W is p's block. (Sub-case (a))

Hence, dissatisfaction(W) > 1.

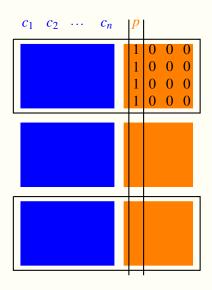


Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits one candidate from D, say p.

Since $W \setminus D$ is not a hitting set*, there is exactly one voter v that is not represented by W is p's block. (Sub-case (b))

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

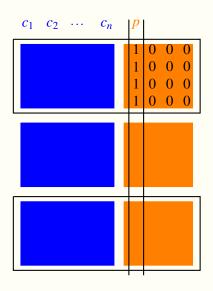


Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose W omits one candidate from D, say p.

Since $W \setminus D$ is not a hitting set*, there is exactly one voter v that is not represented by W is p's block. (Sub-case (b))

 $W \setminus D$ combined with any element from the set corresponding to v, gives a hitting set of size at most k.



(Contradicts this assumption) Suppose D is the only committee that represents every voter. Let W be any other committee s.t. |D| = |W|.

Suppose D is the only committee that represents every voter.

Since $W \setminus D$ is not a hitting set*, there is exactly one voter v that is not represented by W is p's block.

 $W \setminus D$ combined with any element from the set corresponding to v, gives a hitting set of size at most k.

Thank You !