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Multiwinner Elections

Given preferences of n voters over m candidates, our task is to
aggregate the preferences to output a committee of size k

Preferences can be represented in many ways, we consider:
1 Complete strict orderings
2 Approval ballots ((m)-length binary vector)

Let C→ set of m candidates, V→ set of all voters and
L(C)→ set of all preferences over C. A multiwinner
committee rule R is function s.t.,

f : (L(C)n,k)→ R(E,k)

where E represents election E = (C,V) and R(E,k) is the
family of k-sized subsets of C.
For this work, we consider Chamberlin Courant voting rule.
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Example:
Finding a collection of movies to include in Airplane

n = 4,m = 5,k = 2

Figure: Complete Orderings Figure: Approval Ballots

Note: Figures are taken from [1]1

1Piotr Faliszewski: rapc-session-3-committees.pptx



Robustness Radius

Definition: For multiwinner voting rule R, and input
E = (C,V), a committee k and an integer r, we ask if it is
possible to obtain an election E ′ by making at most r swaps of
adjacent candidates within rankings of E (or change at most
k−bits for the case of approval ballots) s.t. R(E,k) 6= R(E,k)

YES → RR 6 r
NO → RR> r
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Related Work

’Robustness Among Multiwinner Voting Rules’ [SAGT’18] 2 –
First defined the concept of RR

The paper considers the problem of RR for many voting rules
(SNTV, k-Bloc, Copeland, NED, STV and CC) and shows
many polynomial time results, but shows the hardness for CC.
We consider the exact algorithms for hard instances and ask
the question on restricted domain for CC rule

2Bredereck, R., Faliszewski, P., Kaczmarczyk, A., Niedermeier, R., Skowron, P., & Talmon, N.
(2017, September). Robustness among multiwinner voting rules. In International Symposium on
Algorithmic Game Theory (pp. 80-92). Springer, Cham.
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Similar Notions

RR captures the impact of small changes in the input
preferences on the set of the winning committees for given
voting rule.

MoV (Margin of Victory) – It measures the number of voters
to be changed rather than the number of swaps. Hence MoV
is more powerful model than RR.
Swap Bribery – Also cares about the outcome after the
change in profile 3.

3Elkind, E., Faliszewski, P., & Slinko, A. (2009, October). Swap bribery. In International Symposium
on Algorithmic Game Theory (pp. 299-310). Springer, Berlin, Heidelberg
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Preliminaries

Misrepresentation function: For an m-candidate election
with votes specified as complete order over set of candidates, a
dissatisfaction function is given by a non-decreasing function
α : [m]→ N with α(1) = 0.

Ex. Borda: αm
B(i) = αB(i) = i−1

Note that for approval ballots,
αB(i) = 0 ⇐⇒ i ∈ (Approval set); 1 otherwise.

Assignment function: k-CC-assignment function for an
election E = (C,V) is a mapping Φ : V→ C such that
|Φ(V)|6 k
Aggregation Function: Used to measure the quality of
Assignment Function. We use following two in our work:

`1 =
∑

i=1,...,nα(posvi
(Φ(vi))), and

`∞(Φ) =maxi=1,...,nα(posvi
(Φ(vi)))
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Chamberlin Courant Example:

Consider the committee:

(considering `1 dis-satisfaction) Note: Figure is taken from [1]4

4Piotr Faliszewski: rapc-session-3-committees.pptx



Chamberlin-Courant Voting Rule

Chamberlin Courant-rule

For given dissatisfaction function (α) and aggregation function (`),
the α-`-CC voting rule is a mapping that takes an election
E = (C,V) and a positive integer k with k 6 |C| as its input, and
returns a k-CC-assignment function Φ for E that minimizes `(Φ). 5

6

5Chamberlin & Courant: Representative deliberations and representative decisions
6Betzler, Slinko & Uhlmann: On the Computation of Fully Proportional Representation



Parameterized Complexity

Parameterized problem is denoted as (Q,k)⊆ Σ∗×N
where Q is a classical language and k is the parameter

FPT→ if ∃ algorithm that decides in time O(f (k)nO(1))

XP→ if ∃ algorithm that decides in time O(nf (k))
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Results Summary

Note: All results are parameterized by parameter k- the size of the
committee.

For general profiles:
1 RR is W[2]-hard for Approval Chamberlin-Courant.
2 XP algorithm for determining RR for complete rankings/

approval ballots.
On nearly restricted domain:

1 RR is NP-hard for `1 −CC even for 6-crossing domains.
2 RR is NP-hard for `∞−CC even for 4-crossing domains.
3 RR is NP-hard for `∞−CC even for 4-composite SP domains.
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Hardness for Approval Ballots

Theorem

Checking if RR=1 for Approval Chamberlin Courant is W[2] hard
parameterized by size of committee (k).

Reduction Hitting Set instance.
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Hitting Set
Definition

Hitting Set Instance:

U : u1 u2 u3 · · · un

∀Si ∈ F;Si ⊆ U

Given k, does there exist S⊆ U s.t. |S∩Si| 6= φ & |S|6 k



Hitting Set
Definition

Hitting Set Instance:

U : u1 u2 u3 · · · un

F : S1 S2

· · ·

Sm

∀Si ∈ F;Si ⊆ U

Given k, does there exist S⊆ U s.t. |S∩Si| 6= φ & |S|6 k



Hitting Set
Example

Hitting Set Instance:

U= {1,2,3,4}

F = {(1,2,3),(1,2),(3,4),(2,4),(1,4)}

k = 1

NO instance



Hitting Set
Example

Hitting Set Instance:

U= {1,2,3,4}

F = {(1,2,3),(1,2),(3,4),(2,4),(1,4)}

k = 2

S = {1,2}



Construction
General Case

Hitting Set Instance:
U= {1,2,3,4}
F = {(1,2,3),(1,2),(3,4),(2,4),(1,4)}
|U|= n
k = 2 (size of the hitting set)

RR Instance for Approval Voting Rule:
k ′ = k (Committee size)
A := {c1,c2, . . . ,cn}︸ ︷︷ ︸

U

∪ {d1,d2, . . . ,dk}︸ ︷︷ ︸
D
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Hitting Set Instance:
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Equivalence of two instances:

Forward Direction:
’YES’ instance of HS
=⇒ at least 2, 2-sized winning committees
(one by candidates corresponding to Hitting Set and the other
is trivial committee by dummy candidates)

Both the committees have dis-satisfaction score of 0, hence
optimal.
We make entry (v1,d1) = 0 to knock off committee (d1,d2)
from the winning set since the mis-representation score for this
committee is now 1.
Hence RR=1.
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Equivalence of two instances: Reverse Direction

If there is more than one winning committee in the constructed
election, then there exists a hitting set of size at most k.

If RR = 1 for the constructed election, then there are at least
two winning committees of size k.

⇓

If RR = 1 for the constructed election, the instance of HS on
which the election is based is a YES-instance.



Equivalence of two instances: Reverse Direction

If there is more than one winning committee in the constructed
election, then there exists a hitting set of size at most k.

If there is exactly one winning committee in the constructed
election, then any other committee has a dissatisfaction score
of at least two.

⇓

If RR = 1 for the constructed election, the instance of HS on
which the election is based is a YES-instance.
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Equivalence of two instances: Reverse Direction

If there is exactly one winning committee in the constructed
election, then any other committee has a dissatisfaction score
of at least two.



Case I
More than one winning committee

c1 c2 ... cn d1 ... dk

Let W be another winning commit-
tee different from D.

Score(W) = Score(D)
i.e. every voter has a representative
in W

W omits some candidate from D,
say di.
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Let W be another winning commit-
tee different from D.

Score(W) = Score(D)
i.e. every voter has a representative
in W

W omits some candidate from D,
say di.

Consider block corresponding to di.

Here, every voter (set) is repre-
sented by a non-dummy candidate.
Hence, W \D corresponds to a hit-
ting set.
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Case II
Unique winning committee

c1 c2 ... cn
Suppose D is the only committee
that represents every voter.

Let W be any other committee s.t.
|D|= |W |.

Suppose W omits two candidates
from D, say p and q.
Consider the voter blocks corre-
sponding to p and q.

Since W \D is not a hitting set*,
there is at least one voter in each
block that is not represented by W
in each block.
Hence the dissatisfaction of W is at
least 2. (done)
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Let W be any other committee s.t.
|D|= |W |.

Suppose W omits two candidates
from D, say p and q.
Consider the voter blocks corre-
sponding to p and q.

Since W \D is not a hitting set*,
there is at least one voter in each
block that is not represented by W
in each block.

Hence the dissatisfaction of W is at
least 2. (done)



Case II
Unique winning committee

c1 c2 ... cn p q

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits two candidates
from D, say p and q.
Consider the voter blocks corre-
sponding to p and q.

Since W \D is not a hitting set*,
there is at least one voter in each
block that is not represented by W
in each block.
Hence the dissatisfaction of W is at
least 2. (done)



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits one candidate
from D, say p.

Consider the block corresponding
to p



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits one candidate
from D, say p.

Consider the block corresponding
to p



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits one candidate
from D, say p.

Since W \D is not a hitting set*,
there is at least one voter that is
not represented by W is p ′s block.



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits one candidate
from D, say p.

Since W \D is not a hitting set*,
there is at least one voter that is
not represented by W is p ′s block.



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits one candidate
from D, say p.

Since W \D is not a hitting set*,
there are at least two voters that is
not represented by W is p ′s block.
(Sub-case (a))

Hence, dissatisfaction(W)> 1.



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits one candidate
from D, say p.

Since W \D is not a hitting set*,
there is exactly one voter v that is
not represented by W is p ′s block.
(Sub-case (b))



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose W omits one candidate
from D, say p.

Since W \D is not a hitting set*,
there is exactly one voter v that is
not represented by W is p ′s block.
(Sub-case (b))

W \D combined with any element
from the set corresponding to v,
gives a hitting set of size at most
k.



Case II
Unique winning committee

c1 c2 ... cn p

0
0
0
0

0
0
0
0

0
0
0
0

1
1
1
1

(Contradicts this assumption)
Suppose D is the only committee
that represents every voter.
Let W be any other committee s.t.
|D|= |W |.

Suppose D is the only committee
that represents every voter.

Since W \D is not a hitting set*,
there is exactly one voter v that
is not represented by W is p ′s block.

W \D combined with any element
from the set corresponding to v,
gives a hitting set of size at most
k.



Thank You !
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