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Abstract

The Chamberlin-Courant and Monroe rules are
fundamental and well-studied rules in the literature
of multi-winner elections. The problem of deter-
mining if there exists a committee of size k that
has a Chamberlin-Courant (respectively, Monroe)
dissatisfaction score of at most r is known to be
NP-complete. We consider the following natural
problems in this setting: a) given a committee S of
size k as input, is it an optimal k-sized committee,
and b) given a candidate c and a committee size k,
does there exist an optimal k-sized committee that
contains c? In this work, we resolve the complexity
of both problems for the Chamberlin-Courant and
Monroe voting rules in the settings of rankings as
well as approval ballots. We show that verifying
if a given committee is optimal is coNP-complete
whilst the latter problem is complete for ΘP

2 . Our
contribution fills an essential gap in the literature
for these important multi-winner rules.

1 Introduction

We study preference aggregation in the multiwinner setting.
Here, we have a set of voters who express preferences over
a collection of candidates, and we are faced with the task of
shortlisting a small number of candidates in a manner that is
as satisfactory as possible for all the agents involved. This
abstraction captures several application scenarios such as
choosing a governing body of any institution, deciding which
advertisements to show on TV during some program, recom-
mending movies [Lu and Boutilier, 2011], selecting group of
products for promotion [Skowron et al., 2016], shortlisting
candidates for a limited fellowship, etc.

A fundamental property that one often wants a multiwin-
ner rule to satisfy is proportional representation. Intuitively
speaking, proportional representation means that the fraction
of seats that a party receives in the winning committee should
be proportional to the fraction of votes it receives. Indeed,
two of the most popular multiwinner rules, the Chamberlin-
Courant rule [Chamberlin and Courant, 1983] and the Mon-
roe rule [Monroe, 1995], are designed to achieve proportional

representation as best as one can hope for. In the Chamberlin-
Courant (abbreviated CC) rule, we seek winners that can be
hypothetically “assigned to” voters in such a way that ev-
ery voter is reasonably satisfied with their alternative. In the
Monroe rule, we have the additional requirement that each
winning candidate takes on the responsibility of represent-
ing roughly the same number of voters. Depending on how
one formalizes misrepresentation and how the preferences of
the voters are modeled (popularly one of approval ballots or
rankings), natural variants of these rules are used in practice.

Bartholdi et al. [1989] showed that determining winners for
many, otherwise excellent, voting rules are NP-hard. Promi-
nent examples of such single winner (k=1) rules include Ke-
meny’s voting rule [Kemeny, 1959], and Lewis Caroll’s rule
(Dodgson Rule, [Dodgson, 1876]). Moreover, some of these
single winner rules seem to be substantially harder than any
NP-complete problem — they are complete for the complex-
ity class PNP‖ [Hemaspaandra et al., 2005]. Papadimitriou
and Zachos [1982] were the first to introduce the class PNP‖ .
Any language in this class can be decided in polynomial time
using a polynomial number of parallel access to an NP ora-
cle. Notice that, parallel access forbids adaptive queries and
only allows ‘batch’ queries to an NP oracle.

We recall briefly that the preferences of voters in an elec-
tion instance are typically solicited as either rankings (total
orders over candidates) or approval ballots (subsets of “ap-
proved” candidates). The problem of finding a committee
whose misrepresentation is bounded by a given threshold is
known to be NP-complete for Chamberlin-Courant and Mon-
roe [Lu and Boutilier, 2011; Procaccia et al., 2008] in the set-
ting of rankings as well as approval ballots. In a recent devel-
opment ([Bredereck et al., 2017a, Theorem 10], improving
upon [Bredereck et al., 2017b, Corollary 3]), it was shown
that it is ΘP

2 -hard to determine whether a given candidate
belongs to an optimal CC committee in the setting of rank-
ings for the utilitarian method of aggregating misrepresenta-
tion scores. Following up on this, the main contribution of
our work is to completely settle the complexity of two natural
versions of the winner determination question in the context
of the two fundamental multiwinner rules — Chamberlin-
Courant and Monroe. We address these problems in the set-
tings of both rankings and approval ballots, and for both the
utilitarian and egalitarian methods of aggregating scores.



We consider the following problems for both the Chamberlin-
Courant and Monroe rules, in the setting of approval ballots
and rankings. In the WINNER VERIFICATION problem, we
want to know if a proposed committee is optimal, and in the
CANDIDATE WINNER problem, we are given a candidate c
and a committee size k, and the question is if there exists an
optimal k-sized committee containing c.

Winner Verification. Our first set of contributions is for the
WINNER VERIFICATION problem; we show that it is com-
plete for the complexity class coNP. In this case, the member-
ship is easy to establish. For a given committee, observe that
it is easy to compute its score with respect to the Chamberlin-
Courant rule (and also the Monroe rule, although this is less
straightforward). Thus, our coNP certificate is simply a “ri-
val” committee with a better score. We remark, as an aside,
that this is in contrast with rules such as Dodgson for which
computing the Dodgson score of a given candidate is in-
tractable. To show hardness for coNP, we reduce from the
complement of the HITTING SET problem in different ways
depending on the setting. For showing the hardness of the
Monroe Rule we employ a variant where the elements enjoy
uniform occurrences among the sets. Apart from settling the
complexity of fundamental question of winner verification,
our contribution identifies a natural coNP-complete problem,
in particular, one that is not merely the complement of a nat-
ural NP-complete problem.

Candidate Winner. This problem was shown to be ΘP
2 -

complete for the Chamberlin-Courant rule, for the utilitarian
aggregation mechanism, in the setting of rankings [Bredereck
et al., 2017a]1. We show the analogous result for the egalitar-
ian version of the rule, and also for both aggregation mech-
anisms in the context of the Monroe rule. Although these
reductions are executed in a similar spirit, the different set-
tings do require non-trivial techniques in the constructions.
Our main contributions are summarized below. We refer the
reader to the next section for the relevant terminology.
Theorem 1. WINNER VERIFICATION for Chamberlin-
Courant and Monroe is coNP-complete in the setting of ap-
proval ballots and rankings. In the latter setting, the result
holds for the `1 and `∞-Borda misrepresentation functions.

Theorem 2. CANDIDATE WINNER for Chamberlin-Courant
and Monroe is complete for ΘP

2 in the setting of approval
ballots and rankings. In the latter setting, the result holds for
the `1 and `∞-Borda misrepresentation functions.

Each of the statements above addresses six distinct scenarios.
Due to lack of space, we give complete proofs for three of
these settings, which we believe to be representative of the
overall flavor of the arguments. We defer the detailed proofs
to the full version of this work [Sonar et al., 2020]. In the
full version of the paper, we also show that the CANDIDATE
WINNER problem for Chamberlin-Courant can be solved in
polynomial time on single-peaked voting profiles.

1This result was independently discovered by the authors of
the present work, while following up on a weaker version of the
from [Bredereck et al., 2017b]. We omit our version of the proof in
this setting because of the similarity of techniques involved.

2 Preliminaries

For a positive integer `, we denote the set {1, . . . , `} by [`].
We first define some general notions relating to voting rules.
Let V be a set of n voters and C be a set of m candidates.
If not mentioned otherwise, we denote the set of candidates,
the set of voters, the number of candidates, and the number
of voters by C, V , m and n, respectively. Every voter v has
a preference �v which is typically a complete order over the
set C of candidates (rankings) or a subset of approved candi-
dates (approval ballots). An instance of an election consists
of the set of candidates C and the preferences of the voters V ,
usually denoted as E = (C, V ) with the understanding that
the voters in V are identified by their preferences.

We now recall some definitions in the context of rankings. We
say voter v prefers a candidate x ∈ C over another candidate
y ∈ C if x �v y. For a ranking �, pos�(c) is given by one
plus the number of candidates ranked above c in �. In par-
ticular, if there are m candidates and c is the top-ranked (re-
spectively, bottom-ranked) candidate in the ranking �, then
pos�(c) is one (respectively, m). We denote the set of all
preferences overC by L(C). The n-tuple (�v)v∈V ∈ L(C)n

of the preferences of all the voters is called a profile. We note
that a profile, in general, is a multiset of linear orders. For a
subset M ⊆ V , we call (�v)v∈M a sub-profile of (�v)v∈V .
For a subset of candidates D ⊆ C, we use P|D to denote
the projection of the profile P on the candidates in D alone.
The definitions of profiles, sub-profiles, and projections are
analogous for approval ballots.

Chamberlin-Courant for Rankings. The Chamberlin–
Courant voting rule is based on the notion of a dissatisfaction
or a misrepresentation function. This function specifies, for
each i ∈ [m], a voter’s dissatisfaction αm(i) from being rep-
resented by the candidate she ranks in position i. A popular
dissatisfaction function is Borda, given by αm(i) = i− 1.

We now turn to the notion of an assignment function. Let
k 6 m be a positive integer. A k-CC-assignment function for
an election E = (C, V ) is a mapping Φ: V → C such that
|Φ(V )| = k, where Φ(V ) denotes the image of Φ. For a given
assignment function Φ, we say that voter v ∈ V is repre-
sented by candidate Φ(v) in the chosen committee. There are
several ways to measure the quality of an assignment function
Φ with respect to a dissatisfaction function α : [m] −→ R;
and we will use the following:

1. `1(Φ, α) =
∑
v∈V α(pos�v

(Φ(v))), and

2. `∞(Φ, α) = maxv∈V α(pos�v
(Φ(v))).

Unless specified otherwise, α will be the Borda dissatisfac-
tion function described above. We are now ready to define
the Chamberlin-Courant voting rule.

Definition 1 (Chamberlin-Courant). For ` ∈ {`1, `∞}, the
`-CC voting rule is a mapping that takes an election E =
(C, V ) and a positive integer k with k 6 |C| as its input, and
returns the images of all the k-CC-assignment functions Φ for
E that minimizes `(Φ, α).



Chamberlin-Courant for Approval Ballots. Recall that
an approval vote of a voter v on the set of candidates C is
some subset Sv of C such that v approves all the candidates
in Sv . We define the misrepresentation score of a k-sized
committee W as the number of voters which do not have
any of their approved candidates in W (i.e. W ∩ Sv = ∅).
Hence the optimal committees under approval Chamberlin-
Courant are the committees which maximize the number of
voters with at least one approved candidate in the winning
committee [Lackner and Skowron, 2018].

We are now ready to describe the questions that we study
in this paper. The first problem is CHAMBERLIN-COURANT
WINNER VERIFICATION (CCWV). Here, the input is an elec-
tionE = (C, V ) and a subset S of k candidates. The question
is if S is a winning k-sized CC-committee for the election E,
in other words, does S achieve the best Chamberlin-Courant
score in the given election among all committees of size k?

In the second problem, given an election E = (C, V ), a com-
mittee size k, and a candidate c ∈ C, we ask if c belongs to
some optimal k-sized committee, in other words, if there ex-
ists S ⊆ C such that c ∈ S, |S| = k, and S is a winning CC
committee. We refer to this as the CHAMBERLIN-COURANT
CANDIDATE WINNER problem (CCCW).

We now turn to the definition of the Monroe voting
rule [Monroe, 1995]. Note that for c ∈ C, Φ−1(c) denotes
the set of voters represented by c.
Definition 2 (Monroe). For ` ∈ {`1, `∞}, the `-Monroe vot-
ing rule is a mapping that takes an election E = (C, V ) and
a positive integer k with k 6 |C| as its input, and returns the
image of any of the k-Monroe-assignment functions Φ such
that |Φ−1(c)| is either bnk c or dnk e where c ∈ C for E that
minimizes `(Φ, α).

We note that MONROE WINNER VERIFICATION (MWV) and
MONROE CANDIDATE WINNER (MCW) are defined in the
natural way. We also recall the definitions of 3-HITTING SET
and its complement. In the 3-HITTING SET problem, we are
given a ground set U , a family F of three-sized subsets of U ,
and an integer k, and the question is if there exists S ⊆ U of
size at most k that intersects every set in F , i.e: ∀ F ∈ F ,
S∩F 6= φ. In the C-3-HITTING SET problem, the input is the
same, and is a YES-instance if and only if there is no hitting
set of size k; in other words, if for each S ⊆ U with |S| 6 k,
there exists some FS ∈ F such that S ∩ FS = φ. We recall
that 3-HITTING SET is a classic NP-complete problem, and
c-3-HITTING SET is co-NP complete.

The Class PNP‖ (ΘP
2 ). The class PNP‖ is the class of prob-

lems solvable using a P machine having parallel access to an
NP oracle. The class ΘP

2 was introduced in [Papadimitriou
and Zachos, 1982] and named in [Wagner, 1990]. The class
ΘP

2 was shown to be equivalent to PNP‖ by Hemachandra
[1989]. The VERTEX COVER MEMBER problem is the fol-
lowing. Given a graph G := (V,E) and a vertex w ∈ V , the
question is if there exists a minimum sized vertex cover con-
taining w. The problem was shown to be complete for PNP‖
by [Hemaspaandra et al., 2005].

3 Winner Verification Problems

In this section, we show the coNP-completeness of
CHAMBERLIN-COURANT WINNER VERIFICATION in the
setting of rankings for the `1-Borda misrepresentation score.
The argument for membership is, in brief, the following: a ri-
val committee with a better misrepresentation score is a valid
certificate for the NO instances of CCWV. This is an effi-
ciently computable certificate since it is easy to compute the
Chamberlin-Courant score of a given committee. We now
turn to the proof of hardness.
Theorem 3. CHAMBERLIN-COURANT WINNER VERIFI-
CATION is coNP-hard in the setting of rankings for the `1-
Borda misrepresentation score.

Proof: We show a reduction from c-3-HITTING SET to the
CC-WINNER problem. Let 〈U,F ; k〉 be an instance of c-3-
HITTING SET with n elements in the universe U and m sets
of size three in the family F . We construct a profile P over
alternatives A as follows. First, we introduce one candidate
corresponding to each element of the universe U , k “dummy”
candidates, and a large number of “filler” candidates, that is:

A := {cu | u ∈ U}︸ ︷︷ ︸
C

∪ {d1, . . . , dk}︸ ︷︷ ︸
D

∪ {z1, . . . , zt}︸ ︷︷ ︸
Z

,

where t = 3(mk)2. Also, for every 1 6 i 6 k, and for every
X ∈ F , introduce a vote v(i,X) that places the candidates
corresponding to the elements in X in the top three positions,
followed by di, followed by 3mk candidates from Z. We en-
sure that we use distinct candidates from Z in the top 3mk+4
positions of all the voters, in other words, no candidate from
Z appears twice in the top 3mk + 4 positions. Note that t is
chosen to be large enough to make this possible. This is fol-
lowed by the candidates in U \X ranked in an arbitrary order
followed by the remaining filler candidates, also ranked in an
arbitrary order.

In this instance, note that a committee corresponding to a hit-
ting set has a score of at most 2mk, while the score of the
committee D is 3mk. In the constructed instance, we now
ask if the committee D consisting of k dummy candidates is
a winning committee. This completes the construction of the
instance. We now turn to the equivalence of two instances.

In the forward direction, suppose we have a YES instance of
c-3-HITTING SET. This implies that there does not exist any
hitting set of size at most k. Recall that the misrepresentation
score for a committee consisting of a hitting set is at most
2mk, while noting that any such committee must have size
greater than k. Now, we show that for all other committees
of size at most k, the misrepresentation score is greater than
3mk.
Lemma 1. Consider an instance 〈A, V,D〉 of CC-winner
Verification based on a YES-instance of c-3-Hitting Set
〈U,F ; k〉. For any feasible committee C ′ ⊆ A of size k dif-
ferent from D, the `1-Borda misrepresentation score of C ′ is
greater than 3mk.

Proof: (of Lemma 1.) Let U ′, D′ and Z ′ denote, respectively,
the candidate subsets C ′ ∩C, C ′ ∩D and C ′ ∩Z. Since C ′ is



different from D, there is at least one candidate from D that
does not belong to C ′ (the only other possibility is that C ′ is a
superset of D, but this is not possible since |C ′| = |D| = k).
Without loss of generality, suppose d1 /∈ C ′. Now consider
the votes given by V ′ := {v(1, X) | X ∈ F}. We claim that
there are at least |Z ′| + 1 voters in V ′ whose misrepresenta-
tion score for the committee C ′ is strictly greater than three.
Indeed, if not, then it is straightforward to verify that U ′ com-
bined with an arbitrarily chosen element from each set not hit
by U ′ comprises a subset of size at most |U ′| + |Z ′| 6 k
which intersects every set in F , contradicting our assumption
that F has no hitting set of size at most k. To see this, ob-
serve that every vote in V ′ that has a misrepresentation score
of three or less is necessarily represented by a candidate from
U ′, since d1 /∈ C ′, and therefore, the sets corresponding to
all of these votes are hit by U ′, and the remaining sets can be
hit “trivially” since there are at most |Z ′| of them. Now con-
sider the voters who have a “high” misrepresentation score:
V ′′ := {v(1, X) | X ∈ F and τ(v(1, X), C ′) > 3}, where
τ(v(1, X), C ′) is the Borda score of the highest-ranked can-
didate of C ′ according to v(1, X), with respect to the ranking
of v(1, X). By the argument in the previous paragraph, we
have that |V ′′| > |Z ′|. Recalling that every vote has dis-
tinct filler candidates in the top 3mk positions after di, by
the pigeon-hole principle, we conclude that there is at least
one vote v(1, X) in V ′′ such that ZX ∩ Z ′ = ∅, where ZX
denotes the filler candidates that appear in the top 3mk + 4
positions of the vote v(1, X). Since the candidates occupying
the top four positions of this vote do not belong to C ′ either,
it follows that the misrepresentation score of v(1, X) for C ′
is greater than 3mk, and this concludes our argument.

The committee D has a misrepresentation score of 3mk. Us-
ing Lemma 1, since F has no hitting set of size at most k,
we have that D is a winning committee among all feasible
committees, as desired.

In the reverse direction, we start with the assumption that D
is a winning committee. Therefore, the optimal misrepresen-
tation for the constructed election instance is 3mk. Observe
that if there exists a hitting set S of size at most k, then the
committee C ′ formed using the corresponding candidates of
hitting set will have a misrepresentation score of at most 2mk,
as discussed above. Thus, D would not be a winning com-
mittee, a contradiction — and this implies that 〈U,F ; k〉 was
indeed a YES-instance of c-3-HITTING SET. This completes
the argument of equivalence.

For `∞-CC, we again reduce from the complement of the 3-
HITTING SET problem with a similar construction. We in-
troduce votes corresponding to sets in the family, where the
top three candidates are the candidates corresponding to the
elements contained in the set, and the fourth candidate is a
dummy candidate. Once we construct k blocks with distinct
dummy candidates in the fourth position, the possible mis-
representations will play out in an analogous fashion. For
obtaining these three results in the setting of Monroe, while
the reduction is similar, we have to reduce from a variant of
the Hitting Set problem with additional structure where the
elements appear with an uniform frequency in the set system.

4 Candidate Winner Problems
In this section, we turn to the MONROE CANDIDATE WIN-
NER problem. Recall that the input is 〈C, V, c, k〉, and the
question is if there exists an optimal Monroe committee of
size k containing c. We demonstrate that the problem is com-
plete for ΘP

2 in the setting of rankings for both the `1-Borda
misrepresentation function. The argument for the case of ap-
proval ballots for this problem are in a similar spirit, and are
deferred to a full version of this paper.

We first consider the case of the `1-Borda misrepresenta-
tion. Our focus here will be on showing hardness, and we
informally justify the claim for membership. We use oracle
queries to a variant of MCW where we additionally demand
for the committee to achieve a particular target misrepresen-
tation score. Note that the worst possible misrepresentation
score in an instance with m candidates and n voters is mn.
Thus, by guessing this target score, we can find the score of
the optimal Monroe committee that contains c and the score
of the optimal Monroe committee, and comparing these an-
swers the question of whether there exists an optimal Monroe
committee of size k containing c. We now turn to the reduc-
tion to demonstrate hardness.
Theorem 4. MONROE CANDIDATE WINNER is ΘP

2 -hard for
the `1-Borda misrepresentation function.

Proof: We reduce from the ΘP
2 -complete problem VER-

TEX COVER MEMBER. Recall that we are given a graph
G := (V,E) (with n vertices and m edges), and a vertex
w ∈ V , the question is if there exists a minimum sized vertex
cover containing w. Given an instance 〈G := (V,E), w〉 of
VERTEX COVER MEMBER we construct an instance of CC
CANDIDATE WINNER as follows. Let the set of candidates
be C := Cv ∪ D ∪ D′ ∪ S, where Cv denotes the set of n
candidates corresponding to vertices of G and D and D′ de-
note type I and type II dummy candidates respectively. Let ∆
denote a set of n4m type I dummy candidates, and ∆′ denote
a set of 2(n4m) type II dummy candidates. We note that the
subsets of dummy candidates specified explicitly in different
votes are always chosen so that there are no repeated dummy
candidates in the explicitly defined blocks, in other words, the
chosen dummy candidates are always distinct. Also, D (D′)
is the union of all the ∆’s (∆′’s) respectively specified in the
profile, which is given by the following five blocks of voters:

B Block 1: We construct m votes corresponding to the
edges in G. For an edge (u, v) we add:

cu � cv � ∆′ � Cv \ {cu, cv} � rest

where “rest” denotes the set of remaining candidates
placed in an arbitrary order.

B Block 2: For the desired vertex w from the VERTEX
COVER MEMBER instance, we pick an arbitrary edge
incident on w (say (w, x)) in G, and add m + 1 copies
of the following vote:

cw � cx � ∆′ � Cv \ {cw, cx} � rest

B Block 3: We add n votes of the form:

∆ � cw � Cv \ {cw} � rest



B Block 4: For each candidate dj ∈ Ds, we add the vote:

dj � ∆′ � rest.

B Block 5: Let Dα be a subset of dummy candidates d ∈
D such that d appears in the top position for one of the
votes in Block 3. Note that |Dα| = n. Further, let N =
2(m + n + 1). For each v ∈ {Cv ∪D′′} and ` ∈ [N ],
we add the following vote:

v � Ds � ∆′ � rest

In the constructed MONROE CANDIDATE WINNER instance,
we ask if there exists an optimal committee of size 2n+1 con-
taining cw. This completes the construction for our reduction.
Before showing the equivalence of the two instances, we es-
tablish the following lemma.
Lemma 2. Let q be the size of an optimal vertex cover in G.
Then, the following holds for any optimal committee C ′ of
size 2n+ 1 in the constructed election instance:

1. C ′ does not contain any d′ ∈ D′.
2. S ⊂ C ′.
3. C ′ contains exactly q candidates corresponding to an

optimal vertex cover.

Proof: First, we analyze the Monroe score of a committee C
which contains all n + 1 special candidates S, q candidates
corresponding to an optimal vertex cover (S′), and the re-
maining (n − q) candidates from D which appear in the top
positions of (n − q) votes in Block 3. Note that in any Mon-
roe committeeC ′, each candidate represents exactlyN votes.
We now describe the Monroe assignment for C. Each vote in
Block 1 and 2 is represented by one of the top two candidates
such that the corresponding vertex (v) belongs to the vertex
cover (S′). The misrepresentation for C in Block 1 is at most
m, and in Block 2 it is at mostm+1. In Block 3, exactly n−q
votes are represented by their first choice. For those votes that
are not represented by the top candidate already, the misrep-
resentation for C is at most (|∆| + n − 1) per vote since all
the votes in Block 3 are represented by the candidate in Cv
for that vote in the worst case. In Block 4, all votes are rep-
resented by their top choice yielding zero misrepresentation.
Votes in Block 5 are represented as follows: For each can-
didate ci corresponding to a vertex u ∈ S′, if cu represents t
votes from first 3 blocks, then cu also represents (N−t) votes
from Block 5 among the ones she appears at the first position.
Similarly, for d ∈ {D ∩ C}, d represents N − 1 votes among
the ones she appears at the top position. Next, each special
candidate s ∈ S represent (N − 1) votes in Block 5, yielding
misrepresentation score at most (n + 1)(N − 1) for each s.
Hence, the total misrepresentation for C is strictly less than
n4m+ 3mn2 + 3n3 < 2(n3m2 + n4m) for large enough n.

Towards showing the first statement, consider a commit-
tee C∗ which contains d′ ∈ D′. In any Monroe as-
signment, d′ has to represent N votes. Observe that
d′ appears in first (n4m) positions exactly once, hence,
misrepresentation(C∗) > misrepresentation(C). To show
the second statement, consider a committee C∗ which ex-
cludes a special candidate s ∈ S. It is easy to see that

misrepresentation(C∗) > misrepresentation(C) even if we
only consider misrepresentation from a single vote from
Block 4 with s at the first position.

We now turn to statement 3. Now, let C∗ be an optimal com-
mittee which does not contain q candidates corresponding to
some optimal vertex cover. We use statements 1 and 2 to an-
alyze the following two cases:

B |C∗∩Cv| > q: In this case, C∗ contains at most (n−q−
1) candidates from D. Hence, the misrepresentation of
C∗ from Block 3 is at least |∆|×(q+1) which is greater
than the misrepresentation score for C. This contradicts
the optimality of C∗.

B |C∗ ∩ Cv| 6 q: Since the size of an optimal vertex
cover is q, any committee C∗ with at most q candidates
from Cv does not include any candidates correspond-
ing to the endpoint of at least one edge due to the case
we are in (i.e., C∗ does not contain candidates corre-
sponding to an optimal vertex cover). Hence, C∗ incurs
a misrepresentation of at least |∆′| from one of the votes
in Block 1 which implies misrepresentation(C∗) >
misrepresentation(C).

This completes the proof for Lemma 2.

We now turn to the proof of equivalence. In the forward direc-
tion, given an optimal vertex cover of size q containing w, we
construct an optimal committee C ′ by choosing q candidates
corresponding to the vertex cover, (n − q) candidates from
the set D which appears in the top position of exactly (n− q)
votes from Block 3, all n+ 1 special candidates S. We com-
pute the Monroe assignment of C ′ is the same way we did for
committee C′ in Lemma 2. By Lemma 2, we already know
that any optimal committee must contain all candidates from
S, and candidates corresponding to an optimal sized vertex
cover. Therefore, it suffices to show that committees corre-
sponding to an optimal vertex covers not containing cw are
not optimal. Indeed, this follows from the fact that in Block 2,
cw is the top candidate in exactly (m+1) votes, and in Block
3, cw leads all other candidates from the set Cv . Hence, it is
easy to verify that an optimal committee must contain cw.

In the reverse direction, given an optimal committee C ′ con-
taining cw, we need to construct an optimal vertex cover for
G which includes the vertex w. Since C ′ is optimal, using
Lemma 2 we know C ′ ∩ Cv is an optimal vertex cover of
G. Since we are given that cw ∈ C ′, we have that the vertex
cover corresponding to C ′ is an optimal vertex cover contain-
ing cw, as desired.

Now, we show that CCCW is hard for ΘP
2 in the setting of

rankings for the `∞-Borda misrepresentation function. We
recall that an analogous result for the `1-Borda misrepresen-
tation function was shown in [Bredereck et al., 2017b]. The
argument for membership is similar to the previous case and
is omitted for brevity.
Theorem 5. CCCW is ΘP

2 -hard for the `∞-Borda misrepre-
sentation function.

Proof: As before, we reduce from VERTEX COVER MEM-
BER. Given an instance 〈G := (V,E), w〉 of VERTEX



COVER MEMBER we construct an instance of CC CAN-
DIDATE WINNER as follows. Let the set of candidates be
C := Cv ∪ D ∪ D′, where Cv denotes the set of n candi-
dates corresponding to vertices of G, and D and D′ denote
type I and type II dummy candidates respectively. Let ∆ de-
note a set of m + n + 1 type I dummy candidates, and ∆′

denote a set of 2 type II dummy candidates. We note that the
subsets of dummy candidates specified explicitly in different
votes are always chosen so that there are no repeated dummy
candidates in the explicitly defined blocks, in other words, the
chosen dummy candidates are always distinct. We construct
the set of voters as the following three blocks:

B Block 1: We construct (n+2) copies of each ofm votes
corresponding to the edges in G. Specifically, for an
edge (u, v) we add (n+ 2) copies of the vote:

cu � cv � ∆ � Cv \ {cu, cv} � rest,

where rest denotes the set of remaining candidates in
some arbitrary order.

B Block 2: We add the following n votes:

v1 := ∆′ � d1,1 � d′ � ∆ � Cv � rest
...

vi := ∆′ � di,1 � . . . � di,i � d′ � ∆ � Cv � rest
...

vn := ∆′ � dn,1 � . . . � dn,n � d′ � ∆ � Cv � rest

B Block 3: We also add (n + 2) copies of the following
vote to force d′ in any optimal committee:

d′ � ∆ � rest

In the constructed CCCW instance, we ask if there exists an
optimal committee of size n + 1 containing cw. This com-
pletes the construction for our reduction. We now state a
lemma analogous to Lemma 2, whose proof is omitted due
to space constraints.

Lemma 3 (?). Let q be the size of an optimal vertex cover in
G such that q > 2. Then, the following holds for any commit-
tee C ′ of size n + 1 in the constructed election instance: (a)
any optimal committee contains candidate d′, (b) if C ′ con-
tains d ∈ D, then C ′ is not an optimal committee, and (c) if
C ′ does not contain exactly q candidates corresponding to an
optimal vertex cover, then C ′ is not optimal.

Forward direction. Given an optimal vertex cover V ′ of size q
containing w, we construct a committee C as described in the
paragraph one of the proof of Lemma 3. We claim that C is
an optimal committee. Using Lemma 3 we know that any op-
timal committee contains exactly q candidates corresponding
to an optimal vertex cover and contains candidate d′. From
the structure of Block 2, it is easy to observe that in order
to minimize the overall misrepresentation from Block 2, the
only way is to choose the candidates from position n− q + 2
for voters vj for j ∈ {n− q+ 1, n− q+ 2, . . . , n}. Note that

first q voters from Block 2 are represented by d′ while staying
within the misrepresentation limit of n− q + 1.

Reverse direction. Let C ′ be an optimal committee contain-
ing cw. Using Lemma 3, we know thatC ′ contains candidates
corresponding to an optimal vertex cover. Hence, we can re-
cover a desired optimal vertex cover containing cw.

For the analogous results for the CC and Monroe voting rules
in the remaining settings, we refer the reader to the full ver-
sion of this work [Sonar et al., 2020].

5 Concluding Remarks

We have addressed the problems of WINNER VERIFICATION
and CANDIDATE WINNER in the setting of multiwinner vot-
ing. We have resolved the complexity of both the problems
for the Chamberlin-Courant and Monroe voting rules in var-
ious scenarios. In particular, for rankings, we have consid-
ered both the `1 and the `∞ notions of misrepresentation,
and we have also studied variants of these rules in the con-
text of approval ballots. We have shown that verifying if
a given committee is optimal is coNP-complete whilst the
second problem is complete for ΘP

2 in all the twelve cases.
Overall, our results comprehensively settle the complexity of
these two problems in the general setting. These outcomes
primarily serve the purpose of deepening our understanding
of where these problems lie in the complexity-theoretic land-
scape. Further, since the WINNER VERIFICATION family of
problems are complete for ΘP

2 , our results also hint that nat-
ural heuristics for the question are unlikely to perform well
in practice. Indeed, investigating the performance of heuris-
tics (by possibly adapting greedy approaches for finding opti-
mal committees and forcing the choice of a desired candidate)
would be an interesting direction for complementing our the-
oretic considerations.

Another natural direction for further thought is the setting
of restricted domains, which have received much attention
for capturing structure in real-world data sets and for pro-
viding natural “islands of tractability” for several hard voting
problems [Elkind et al., 2017]. Indeed, although determining
optimal committees for the Monroe rule remains intractable
even in the setting of single-crossing profiles [Skowron et
al., 2015]), we can find an optimal Chamberlin-Courant com-
mittee efficiently if the input is single-peaked [Betzler et al.,
2013] or single-crossing [Skowron et al., 2015]. Further, the
rule is tractable also for structured approval ballots [Elkind
and Lackner, 2015]. With this background, it would be in-
teresting to explore the complexity of the problems we study
in the setting of restricted domains. The WINNER VERIFI-
CATION problems are tractable whenever the naturally asso-
ciated WINNER DETERMINATION problem is tractable, but
the CANDIDATE WINNER problem is less immediate to re-
solve. In the single-peaked setting, with the `1-Borda mis-
representation score, the CANDIDATE WINNER problem can
be resolved by adding several dummy voters who place the
desired candidate at the top position, and comparing the op-
timal CC scores of the original and modified instances. The
situation for other restricted domains remains open.
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