On the Complexity of Winner Verification and Candidate Winner for Multiwinner Voting Rules

IJCAI-PRICAI 2020

Chinmay Sonar, Palash Dey, Neeldhara Misra University of California Santa Barbara Indian Institute of Technology Kharagpur Indian Institute of Technology Gandhinagar

\mathcal{C} (Set of candidates) : {*a*,*b*,*c*,*d*}

<□ ▶ < @ ▶ < E ▶ < E ▶ 2/7

 \mathcal{C} (Set of candidates) : {a, b, c, d}

 \mathcal{V} (Set of votes) :

 $0 \quad 1 \quad 2 \quad 3$ $v_1: a \succ b \succ c \succ d$ $v_2: d \succ b \succ c \succ a$ $v_3: a \succ c \succ b \succ d$ $v_4: a \succ b \succ c \succ d$

<□> < @> < E> < E> E のQC 2/7

 \mathcal{C} (Set of candidates) : {a, b, c, d}

 \mathcal{V} (Set of votes) :

 $0 \quad 1 \quad 2 \quad 3$ $v_1 : a \succ b \succ c \succ d$ $v_2 : d \succ b \succ c \succ a$ $v_3 : a \succ c \succ b \succ d$ $v_4 : a \succ b \succ c \succ d$

k (Target committee size) : 2 Input: $(\mathcal{C}, \mathcal{V}, k)$

<□> < @> < E> < E> E のQC 2/7

 \mathcal{C} (Set of candidates) : {a, b, c, d}

 \mathcal{V} (Set of votes) :

 $0 \quad 1 \quad 2 \quad 3$ $v_1: a \succ b \succ c \succ d$ $v_2: d \succ b \succ c \succ a$ $v_3: a \succ c \succ b \succ d$ $v_4: a \succ b \succ c \succ d$

k (Target committee size) : 2 Input: $(\mathcal{C}, \mathcal{V}, k)$ Let committee $C_1 \leftarrow \{a, d\}$

 \mathcal{C} (Set of candidates) : {a, b, c, d}

 \mathcal{V} (Set of votes) :

 $0 \quad 1 \quad 2 \quad 3$ $v_1 : a \succ b \succ c \succ d$ $v_2 : d \succ b \succ c \succ a$ $v_3 : a \succ c \succ b \succ d$ $v_4 : a \succ b \succ c \succ d$

k (Target committee size) : 2 Input: $(\mathcal{C}, \mathcal{V}, k)$ Let committee $C_1 \leftarrow \{a, d\}$

Each voter is assigned to its favorite candidate in C_1

 \mathcal{C} (Set of candidates) : {*a*,*b*,*c*,*d*}

 \mathcal{V} (Set of votes) :

 $0 \quad 1 \quad 2 \quad 3$ $v_1 : a \succ b \succ c \succ d$ $v_2 : d \succ b \succ c \succ a$ $v_3 : a \succ c \succ b \succ d$ $v_4 : a \succ b \succ c \succ d$

k (Target committee size) : 2 Input: $(\mathcal{C}, \mathcal{V}, k)$ Let committee $C_1 \leftarrow \{a, d\}$

Each voter is assigned to its favorite candidate in C_1

 $d(C_1) = 0 + 0 + 0 + 0 = 0$

 \mathcal{C} (Set of candidates) : {*a*,*b*,*c*,*d*}

 \mathcal{V} (Set of votes) :

 $0 \quad 1 \quad 2 \quad 3$ $v_1 : a \succ b \succ c \succ d$ $v_2 : d \succ b \succ c \succ a$ $v_3 : a \succ c \succ b \succ d$ $v_4 : a \succ b \succ c \succ d$

k (Target committee size) : 2 Input: $(\mathcal{C}, \mathcal{V}, k)$ Let committee $C_1 \leftarrow \{a, d\}$

Each voter is assigned to its favorite candidate in C_1

 $d(C_1) = 0 + 0 + 0 + 0 = 0$

C₁ belongs to the set of winning committees if it achieves least dissatisfaction score

Monroe Voting Rule

 \mathcal{C} (Set of candidates) : {*a*,*b*,*c*,*d*}

 $\mathcal{V} \text{ (Set of votes) :}$ $0 \quad 1 \quad 2 \quad 3$ $v_1 : a \succ b \succ c \succ d$ $v_2 : d \succ b \succ c \succ a$ $v_3 : a \succ c \succ b \succ d$ $v_4 : a \succ b \succ c \succ d$

k (Target committee size) : 2 Input: $(\mathcal{C}, \mathcal{V}, k)$ Let $C_2 \leftarrow \{a, b\}$

Number of votes assigned to each candidate in C_2 is equal

Monroe Voting Rule

 \mathcal{C} (Set of candidates) : {*a*,*b*,*c*,*d*}

 $\mathcal{V} \text{ (Set of votes) :}$ $0 \quad 1 \quad 2 \quad 3$ $v_1 : a \succ b \succ c \succ d$ $v_2 : d \succ b \succ c \succ a$ $v_3 : a \succ c \succ b \succ d$ $v_4 : a \succ b \succ c \succ d$

k (Target committee size) : 2 Input: $(\mathcal{C}, \mathcal{V}, k)$ Let $C_2 \leftarrow \{a, b\}$

Number of votes assigned to each candidate in C_2 is equal

$$d(C_2) = 2$$

 $C_2 \leftarrow$ a winning committee under Monroe rule

Motivation and Related Work

Multiwinner elections are ubiquitous
 E.g., choosing a governing body, airline movie selection

- Multiwinner elections are ubiquitous
 E.g., choosing a governing body, airline movie selection
- CC and Monroe are designed to achieve the desirable property of Proportional representation [CC83] [M95]

< ロ ト < @ ト < E ト < E ト E の Q (4/7)</p>

- Multiwinner elections are ubiquitous
 E.g., choosing a governing body, airline movie selection
- CC and Monroe are designed to achieve the desirable property of Proportional representation [CC83] [M95]
- For both CC and Monroe, finding a fixed size committee with bounded dissatisfaction score are NP-complete [PRZ08] in the setting of rankings as well as approval ballots

・ロト <
一 > <
三 > <
三 > <
三 > <
、 2 > <
、 4/7
</p>

We study two natural variants of the winner determination problem Q.1 Winner Verification Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a *k*-sized committee *C*, determine if *C* is a winning committee

We study two natural variants of the winner determination problem Q.1 Winner Verification Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a *k*-sized committee *C*, determine if *C* is a winning committee

Q.2 Candidate Winner Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a candidate *c*, determine if *c* belongs to a *k*-sized winning committee

Q.1 Winner Verification Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a *k*-sized committee *C*, determine if *C* is a winning committee

Q.2 Candidate Winner Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a candidate *c*, determine if *c* belongs to a *k*-sized winning committee

Preferences	CC		Monroe	
	ℓ_1	ℓ_{∞}	ℓ_1	ℓ_{∞}
Ranking	?	?	?	?
Approval	?	-	?	-

Q.1 Winner Verification Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a *k*-sized committee *C*, determine if *C* is a winning committee

Q.2 Candidate Winner Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a candidate *c*, determine if *c* belongs to a *k*-sized winning committee

Preferences	CC		Monroe	
	ℓ_1	ℓ_∞	ℓ_1	ℓ_{∞}
Ranking Approval	coNP coNP	coNP -	coNP coNP	coNP -

Q.1 Winner Verification Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a *k*-sized committee *C*, determine if *C* is a winning committee

Q.2 Candidate Winner Problem: Given an election $(\mathcal{C}, \mathcal{V}, k)$ and a candidate *c*, determine if *c* belongs to a *k*-sized winning committee

Preferences	CC		Monroe	
	ℓ_1	ℓ_{∞}	ℓ_1	ℓ_∞
Ranking Approval	$\begin{vmatrix} \theta_2^{P-1} \\ \theta_2^P \end{vmatrix}$	θ_2^P	$\begin{array}{c c} \theta_2^P \\ \theta_2^P \\ \theta_2^P \end{array}$	θ_2^P

¹ The result was independently shown by [BFKNST19]

Restricted Domains

Pragmatic structured input setting

 For CC, we show both Winner Verification and Candidate Winner problems are efficiently solvable on single-peaked domains

Pragmatic structured input setting

 For CC, we show both Winner Verification and Candidate Winner problems are efficiently solvable on single-peaked domains

<ロ> < @ > < E > < E > E の Q () 6/7

We extend our results for single-crossing domains

Conclusion/ Open Problems

 We settle the complexity of two natural variants of winner determination problem

Conclusion/ Open Problems

- We settle the complexity of two natural variants of winner determination problem
- WV and CW problem for Monroe voting rule on restricted domains

Conclusion/ Open Problems

- We settle the complexity of two natural variants of winner determination problem
- WV and CW problem for Monroe voting rule on restricted domains

(ロ) (個) (目) (目) (日) (177)

Heuristics for both WV and CV