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Abstract14

We consider a multidimensional space partitioning problem, which we call Anonymity-Preserving15

Partition. Given a set P of n points in Rd and a collection H of m axis-parallel hyperplanes,16

the hyperplanes of H partition the space into an arrangement A(H) of rectangular cells. Given17

an integer parameter t > 0, we call a cell C in this arrangement deficient if 0 < ∣C ∩ P ∣ < t; that18

is, the cell contains at least one but fewer than t data points of P . Our problem is to remove the19

minimum number of hyperplanes from H so that there are no deficient cells. We show that the20

problem is NP-complete for all dimensions d ≥ 2. We present a polynomial-time d-approximation21

algorithm, for any fixed d, and we also show that the problem can be solved exactly in time22

(2d − 0.924)kmO(1)
+O(n), where k is the solution size. The one-dimensional case of the problem,23

where all hyperplanes are parallel, can be solved optimally in polynomial time, but we show that a24

related Interval Anonymity problem is NP-complete even in one dimension.25
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1 Introduction30

Consider the following geometric problem. We are given a set P of n points and a family31

H of m axis-parallel hyperplanes in Rd. The hyperplanes of H partition the space into an32

arrangement A(H) of rectangular cells. Given an integer parameter t > 0, we call a cell C33

deficient if 0 < ∣C ∩P ∣ < t; that is, the cell contains at least one but fewer than t data points of34

P . We then ask: What is the minimum number of hyperplanes we must delete so that there35

are no deficient cells? See Figure 1 for an example. The problem turns out to be nontrivial36

even in two dimensions and, in fact, also in one dimension under a dual formulation.37

While we are mainly interested in this as a natural geometric problem, it can also be38

relevant in the study of data anonymity. For instance, given a real-valued scalar data set, a39

common technique for group anonymization is to partition the domain into buckets, defined40

by a set of boundary values {x1, x2, . . . , xl}. Given an integer target t > 0, the buckets are41

chosen to ensure that any bucket [xi, xi+1] is either empty or contains at least t different42

data records, thereby ensuring t-anonymity for each individual data value. Generalizing this43

to multidimensional data, the buckets are defined independently for each of the d axes, which44

geometrically creates a set of axis-parallel hyperplanes — the hyperplanes with normals45
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23:2 Anonymity-Preserving Space Partitions

Figure 1 A 2-dimensional Anonymity-Preserving Partition instance with t = 4. The deficient
cells are highlighted in gray and the two bold lines denote the optimal solution.

parallel to the i-th coordinate axis correspond to the bucketing of the i-th dimension. Given46

a set of multidimensional data points and a set of candidate hyperplanes, the problem of47

discarding the fewest number of hyperplanes to achieve t-anonymity is precisely our space48

partitioning problem. For instance, one can imagine points being user locations in a two-49

dimensional coordinate system, and the problem is to specify those locations to within some50

“longitude” and “latitude” values so that every user’s location is t-anonymized. Inspired by51

these connections, we have chosen to call our problem Anonymity-Preserving Partition52

for convenience, but our research focus in this work is purely algorithmic, and not related to53

anonymity.54

Space partitioning problems are fundamental to many domains, including computational55

geometry, databases, robotics, etc. [12, 4, 6, 9, 5, 2]; however, to the best of our knowledge,56

this particular partition problem has not been studied. In computational geometry, for57

instance, space partitioning is frequently used for range query data structures such as kD-58

trees, range trees, etc. [7, 22, 1, 18, 20]. The primary focus in those algorithms is a hierarchical59

partitioning of the space to represent a set of points so that all points inside a query range60

can be reported efficiently. In contrast, our goal is to sparsify the (flat) partition induced by61

a given set of hyperplanes. A different type of multidimensional partitioning is investigated62

in [15, 21], where the goal is to partition a d-dimensional array, with nonnegative entries, into63

a fixed number of subarrays with roughly equal weights. Those approaches are motivated by64

an interest in constructing a compact histogram of the multidimensional data. In contrast,65

in our anonymizing partition, the goal is not to balance the weight but rather to avoid66

small-weight regions. In addition, while in the histogram problem the array is partitioned67

into arbitrarily arranged rectangular boxes, in our setting the partition is induced by full68

hyperplanes. In [17], LeFevre et al. also consider an anonymity-related partitioning problem,69

but they compute an arbitrary rectangular subdivision, not an arrangement of hyperplanes.70

They also show that their problem is NP-complete, but their proof requires the dimension of71

the space to be unbounded — in particular, d ≥ n in the constructed instances. In contrast,72

we show our problem is NP-complete even for dimension d = 2.73

1.1 Our Contributions74

We now discuss the main results of this paper. Given a set P of n points in Rd, a set H of75

m axis-parallel hyperplanes, and an integer target 0 < t ≤ n, we define a deletion set to be a76

subset of hyperplanes so that no cell in the remaining arrangement is deficient. The goal of77

the Anonymity-Preserving Partition problem is to find a minimum deletion set.78

For notational convenience, suppose Hi ⊆ H is the subset of planes whose normals are79

parallel to the i-th coordinate axis, for i = 1,2, . . . , d. Then, if the number of nonempty80
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families Hi is p, then our problem is essentially a p-dimensional problem, for p ≤ d. If p = 1,81

then it is easy to solve the problem optimally using dynamic programming in time O(nm).82

Surprisingly, we show that the problem is already NP-hard if p = 2, namely, the input is83

two-dimensional.84

We then propose a polynomial-time p-approximation algorithm for the problem for any85

fixed p ≤ d. For this, we reduce the problem to a variant of the well-known Hitting Set86

problem which we show to have an approximation algorithm using LP rounding. The87

approximate solution for the reduced Hitting Set instance will yield a p-approximate88

solution for our problem. We also give an FPT algorithm for the problem, with running89

time (2d − 0.924)kmO(1) +O(n). From now on, for convenience of the reader, we assume90

that p = d and state the results in terms of d.91

Finally, we also introduce an interval anonymity problem in one dimension which can be92

viewed as a geometric dual of Anonymity-Preserving Partition when d = 1 — the roles93

of lines and points are interchanged. Specifically, we are given a set P of n points, which94

we call markers, a multiset S of m segments (intervals) on the real line R, and an (integer)95

anonymity parameter 0 < t ≤ n. The set of markers P partitions S into equivalence classes,96

where two segments s, s′ are in the same class if they contain the same set of marker points,97

namely, s ∩ P = s′ ∩ P . We say a segment is nonempty if it contains at least one marker. We98

call an equivalence class consisting of nonempty segments deficient if it contains less than t99

segments. In the Interval Anonymity problem, the aim is to remove a minimum number100

of points from P so that every nonempty segment of S belongs to a non-deficient equivalence101

class. For motivation, one can imagine segments as movement trajectories of m users, and102

markers as location sensors, and the goal is to report user locations in such a way that each103

user has t-anonymity. Somewhat surprisingly, this one-dimensional problem turns out to be104

NP-hard.105

2 NP-Hardness of Anonymity-Preserving Partition106

In this section, we prove that Anonymity-Preserving Partition is NP-hard even in two107

dimensions. This problem is easy to solve in one dimension, which we discuss in Section 3.108

Let (P,H, t) be an instance of Anonymity-Preserving Partition in two dimensions.109

Without loss of generality, we assume that H1,H2 ⊆ H are the sets of hyperplanes having110

normals parallel to the x- and y-axes, respectively. Furthermore, we denote the hyperplanes111

h1 ∈ H1 and h2 ∈ H2 by equations of the form h1 = x′ and h2 = y′, respectively, where112

x′, y′ ∈ R are constants. To show NP-hardness, we reduce from a structured variant of SAT113

called Linear Near Exact Satisfiability (LNES), which is known to be NP-complete114

[11]. The main idea here is to associate literals with hyperplanes and clauses with deficient115

cells, and to make satisfying assignments correspond to deletion sets.116

I Theorem 1. Anonymity-Preserving Partition is NP-complete for all dimensions117

d ≥ 2.118

Proof. Clearly, the decision version of our problem belongs to NP. We now show NP-hardness
for just d = 2 as these instances can be easily embedded into any higher dimension. An
instance J of LNES consists of 5s clauses, for s ∈ N, and is denoted by

C = {U1, V1, U
′
1, V

′
1 ,⋯, Us, Vs, U

′
s, V

′
s} ∪ {C1,⋯,Cs}.

We refer to the first 4s clauses as the core clauses, and the remaining s clauses as the119

auxiliary clauses. The set of variables consists of s main variables x1, . . . , xs and 4s shadow120

CVIT 2016
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y3

y4

y1 y2

(a) This figure shows nine nonempty cells
corresponding to an auxiliary clause C ∶=
(y1∨y2∨y3∨y4). The middle cell with one
point is an auxiliary cell, and the four gray
cells on its boundary are shadow auxiliary
cells. The nonempty white cells denote the
helpers.

⋯

⋯

⋮ ⋮

y1 xi y3 y4

xi

y2

(b) This figure shows core cells and variable cells. We con-
sider the following four core clauses: Ui ∶= (y1 ∨ xi), Vi ∶=
(y2 ∨ xi), U ′

i ∶= (y3, xi), V ′
i ∶= (y4, xi). Moreover, we as-

sume the literals y1, y3, y4 are associated with the hyper-
planes in H2 forming the auxiliary cells, and y2 is associated
with the hyperplane in H1. The core cells are colored light
gray, and the variable cell is colored dark gray.

Figure 2 Example construction of auxiliary, core, and variable cells

variables y1, . . . , y4s. Each core clause consists of two literals (one corresponding to a121

main variable, and the other to a shadow variable) and it has the following structure:122

∀ i ∈ [s], Ui ∩ Vi = {xi} and U ′
i ∩ V

′
i = {xi}.123

Each main variable xi occurs exactly twice as a positive literal and twice as a negative124

literal. The main variables only occur in the core clauses. Each shadow variable makes125

two appearances: as a positive literal in an auxiliary clause and as a negative literal in a126

core clause. Each auxiliary clause consists of four literals, each corresponding to a positive127

occurrence of a shadow variable.128

The LNES problem asks whether, given a set of clauses with the aforementioned structure,129

there exists an assignment τ of truth values to the variables such that exactly one literal in130

every core clause and exactly two literals in every auxiliary clause evaluate to true under τ .131

Construction. We construct the set of hyperplanes H =H1 ∪H2 by adding hyperplanes132

placed at integer coordinates starting at one, i.e., H = {h1 = x
′ ∣ x′ ∈ {1,2, . . . ,3qs}} ∪ {h2 =133

y′ ∣ y′ ∈ {1,2, . . . ,3qs}}. These hyperplanes are numbered from left to right and top to134

bottom. For i, j ∈ N, let ◻(i,j) denote a 1×1 cell [i, i+1]×[j, j+1] on A(H). We set q = 5s+4135

(recall s is a parameter from the LNES instance) which is sufficiently larger than the desired136

size of the deletion set (5s). During the construction, we use q hyperplanes between a cluster137

of non-empty cells introduced so the sets remain independent, i.e., deleting lines from one138

cluster does not affect the other. We set the target t to 4. We associate a hyperplane from H139

with each of the 10s literals (H may contain additional hyperplanes which are not associated140

with any literal). Of these 10s hyperplanes, 8s are associated with the shadow literals and 2s141

with the main literals. By default, each cell in A(L) is empty. We introduce the nonempty142

cells and organize them into the following three groups (also, we describe the locations of143

the 4s hyperplanes associated with the positive shadow literals in the auxiliary cells group,144

and the locations of the remaining hyperplanes in the core cells group):145

Auxiliary cells: We introduce a set of nine nonempty cells for each auxiliary clause.146

For i ∈ [s], we call ◻(qi,qi) the auxiliary cell for clause Ci. The first two literals in Ci147

are associated with the two adjacent hyperplanes x = qi and x = qi + 1 from H1, and the148

remaining two literals are associated with the hyperplanes y = qi and y = qi + 1 from H2.1149

1 If for a main variable xi, the two shadow variables appearing in the core clauses Ui, Vi are also the first
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We add one point to ◻(qi,qi) (note that 1 < t/2). Moreover, we add t/2 points to each150

of ◻(qi−1,qi), ◻(qi+1,qi), ◻(qi,qi+1), ◻(qi,qi−1), and refer to them as shadow cells, while we151

add t points to each of ◻(qi−1,qi−1),◻(qi−1,qi+1), ◻(qi+1,qi−1), ◻(qi+1,qi+1), and refer to them152

as helpers (see Fig. 2a). Observe that for each Ci, one needs to remove at least two of153

the four hyperplanes associated with the shadow literals appearing in Ci forming the154

corresponding auxiliary cell ◻(qi,qi). This is to ensure that we have at least t points in all155

the remaining cells among the nine initial cells without exceeding the 5s deletion limit.156

Core cells: For each core clause, we introduce two nonempty cells. For each main variable157

xi, we construct eight cells for the four core clauses Ui, Vi, U
′
i , V

′
i together. Without loss of158

generality, let Ui ∶= (y1∨xi), and Vi ∶= (y2∨xi). Define zi = q(s+2i) for convenience.2 We159

call ◻(zi,zi) and ◻(zi+1,zi) the core cells corresponding to the clauses Ui, Vi, respectively.160

We add two points to each of these cells and associate the common hyperplane x = zi + 1161

from H1 to the literal xi. Next, two cases arise according to the orientation of the162

hyperplanes associated with the literals y1, y2, say p(y1), p(y2) (recall that orientation of163

these hyperplanes is decided while constructing the auxiliary cells):164

1. p(y1) ∈ H1: We associate the hyperplane y = zi from H2 which forms the upper165

boundary of ◻(zi,zi) with y1, and add four points to ◻(zi,zi−1). Similarly, if p(y2) ∈H1,166

we associate the hyperplane y = zi + 1 from H2 which forms the lower boundary of167

◻(zi+1,zi) with y2, and add four points to ◻(zi+1,zi+1).168

2. p(y1) ∈H2: We associate the hyperplane x = zi from H1 which is the left boundary of169

◻(zi,zi) with y1, and add four points to ◻(zi−1,zi). Similarly, if p(y2) ∈H2, we associate170

the hyperplane x = zi + 1 from H1 which is the right boundary of ◻(zi+1,zi) with y2,171

and add four points to ◻(zi+2,zi).172

The construction above ensures that hyperplanes associated with yi and yi have orthogonal173

normals. We call the two nonempty cells introduced in either of the cases above as shadow174

core cells.175

We associate the literal xi to the hyperplane y = zi + q + 1 from H2, and use a procedure176

symmetric to the one above to construct four nonempty cells. Here, ◻(zi+1,zi+q) and177

◻(zi+1,zi+q+1) are core cells for the clauses U ′
i , V

′
i , respectively (note that, here, the two178

core cells are one below the other as opposed to side-by-side as we did for xi). We complete179

the rest of the construction as described above. For an example, refer to Fig. 2b. Observe180

that removal of the hyperplane associated with the positive literal xi makes both core181

cells (corresponding to Ui, Vi) non-deficient as these are merged together. Alternatively,182

removing the hyperplane corresponding to each y1, y2 makes the core cells non-deficient.183

The case of the literal xi and the core clauses U ′
i , V

′
i is symmetric.184

Variable cells: Recall that our construction of core cells ensures that for each main and185

shadow variable, the two hyperplanes associated with its two literals have orthogonal186

normals. Next, we introduce three nonempty cells for each of these variables. For each187

main variable xi, the two hyperplanes associated with xi and xi form the top and left188

boundaries of the cell ◻(zi+1,zi+q+1). We refer to ◻(zi+1,zi+q+1) as a variable cell, and add189

two points to it. Furthermore, we add four points each to ◻(zi,zi+q+1),◻(zi+1,zi+q), and190

call them literal cells. These cells are adjacent to the left and the upper boundaries of191

the variable cell. Refer to Fig. 2b.192

two or the last two literals for some auxiliary clause, then we associate those literals with a pair of
orthogonal hyperplanes y = qi and x = qi rather than with the default of a pair of parallel hyperplanes
described earlier.

2 Observe that we add an offset of qs so that the core and auxiliary cells are independent.

CVIT 2016
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Next, we repeat the same procedure of introducing three nonempty cells for each shadow193

variable at the intersection of the hyperplanes associated with its literals. Notice that194

it is imperative to remove at least one of the two hyperplanes associated with the two195

literals for every variable so as to merge and make the variable cell non-deficient while196

staying within the deletion budget of 5s hyperplanes.197

For the constructed Anonymity-Preserving Partition instance I, we ask if there exists198

a deletion set with size at most 5s. We now turn to the argument of equivalence.199

Forward direction: Recall that we start with an instance J of LNES. Let τ be a200

satisfying assignment for J ; then we claim that the set S consisting of 5s hyperplanes201

associated with 5s literals set to true under τ gives a valid deletion set for I. We now202

show that A(H/S) does not contain any deficient cell. First, we observe that τ sets exactly203

one of the two literals associated with each of the 5s variables to true (since τ is a valid204

assignment). Hence, the deficient variable cell introduced for each variable (see the dark gray205

cell from Fig. 2b) is merged with one of the literal cells and becomes non-deficient. Next,206

for each auxiliary clause Ci for 1 ≤ i ≤ s, exactly two literals are set to true. From the207

construction of the auxiliary cells group, one can verify that removing exactly two of the208

four hyperplanes associated with the four literals in Ci makes the auxiliary cell and the four209

shadow cells non-deficient (see Fig. 2a). Similarly, τ sets exactly one literal from each core210

clause to true. Hence, we remove exactly one hyperplane on the boundary of each deficient211

core cell. Due to this, the core cell merges with either a shadow core cell or another core cell,212

making it non-deficient (see Fig. 2b). This accounts for all the deficient cells in I; hence, we213

conclude our argument for the forward direction.214

Reverse direction: Let S be a valid deletion set of size at most 5s; we construct an215

assignment τ for J by setting the literals associated with hyperplanes in S to true. From216

the construction of the variable cells, we first observe that S contains exactly one of the two217

hyperplanes associated with the two literals for each of the 5s variables in J (since ∣S∣ ≤ 5s).218

Hence, S is a valid SAT assignment, i.e., each variable is either set to true or false. Next,219

using a counting argument, we show that τ is a satisfying assignment for J . Recall that220

each main variable xi occurs twice as a positive literal and twice as a negative literal in the221

core clauses. Hence, the s literals associated with the s main variables set to true under τ222

satisfy exactly 2s core clauses. Next, for the remaining 2s core clauses, τ sets exactly one223

negative shadow literal appearing in each of those clauses to true. This is because from224

the construction of a core cell corresponding to each core clause, at least one of the two225

hyperplanes associated with the literals in the clause must be in S (and literals corresponding226

to main variables cannot be set to true for this set of core clauses). Similarly, τ sets at227

least two positive shadow literals appearing in each auxiliary clause to true. At this stage,228

we use a counting argument: Among the 4s shadow literals set to true under τ , exactly229

2s negative shadow literals and exactly 2s positive shadow literals are true (due to the230

argument above). Hence, with s main literals and 2s negative shadow literals set to true,231

each core clause is satisfied exactly once. With 2s positive shadow literals set to true, each232

auxiliary clause is satisfied exactly twice. This completes the proof for the reverse direction.233

J234

3 Approximation and FPT Algorithms235

In this section, we present a d-approximation algorithm for Anonymity-Preserving236

Partition. We first note that an O(d)-approximation can be easily achieved using a237

Hitting Set approximation, since we have a set system of VC dimension O(d) [13, 8].238
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Unfortunately, the constant factors in these Hitting Set approximations tend to be large,239

and in fact a much simpler greedy algorithm can directly give us a 2d-approximation as240

follows: while there exists a deficient cell C, we remove all of its (at most) 2d bounding241

hyperplanes, and iterate until no deficient cell remains. The approximation guarantee follows242

because for each deficient cell, the optimal solution must remove at least one hyperplane and243

the greedy algorithm removes 2d hyperplanes. Thus, the main challenge is to improve on244

this naive bound, which is the main result of this section.245

Our algorithm first reduces the Anonymity-Preserving Partition problem to a246

special case of Hitting Set in which all sets have a small size, and then we design an247

LP-rounding-based algorithm to obtain a d-approximation for this problem. We also present a248

fixed-parameter tractable algorithm running in time (2d−0.924)kmO(1)+O(n) parameterized249

by the solution size k.3250

The one-dimensional case of Anonymity-Preserving Partition can be easily solved251

in linear time; please see Appendix A for a proof of the following result:252

I Theorem 2. The Anonymity-Preserving Partition problem in one dimension can253

be solved in time O(mn), where m is the number of hyperplanes and n is the number of254

points. Further, if every cell in the arrangement is nonempty, then it can be solved in time255

O(m + n).4256

3.1 A d-Approximation Algorithm257

We start by defining a Hitting Set variant. Given a universe of elements U and a family258

F of subsets of U , the Hitting Set problem asks us to find a minimum-sized set S ⊆ U259

such that S intersects with every set in F . When every set in F has size at most l, we call it260

the l-Hitting Set problem.261

I Lemma 3. Given an instance (P,H, t) of the d-dimensional Anonymity-262

Preserving Partition problem, we can construct an instance (U,F) of 2d-Hitting263

Set such that U = H, ∣F ∣ ≤ ∣H ∣2d, and (U,F) has a hitting set of size k if and only if264

(P,H, t) has a deletion set of size k, for any k ∈ N.265

Proof. Given an instance (P,H, t) of Anonymity-Preserving Partition, we construct266

a 2d-Hitting Set instance with universe U = H and the family F being the set of all267

nonempty subsets X of H such that A(X) has a deficient cell and such that X contains at268

most two hyperplanes from each Hi with 1 ≤ i ≤ d.269

B Claim 4. If (P,H, t) has a deletion set of size k, then (U,F) has a hitting set of size k.270

Proof. Let H ′ ⊆ H be a deletion set of size k for (P,H, t). Then, there is no deficient cell271

in A(H/H ′). Since U = H, we now show that H ′ is also a hitting set of (U,F). Suppose272

not; then there is a set X in F that has no hyperplanes from H ′ in it. We know by the273

construction of F that X has a cell that is deficient in A(X). Observe that even if we add274

any new hyperplanes to the arrangement A(X), there will still be a deficient cell. Thus,275

A(H/H ′) will have a deficient cell, which contradicts our assumption that H ′ was a deletion276

set. J277

3 Fixed-parameter tractability (FPT) is studied in the realm of parameterized complexity. FPT algorithms
admit running time of the form f(k)nO(1), where k is the parameter under consideration and n is the
size of the instance [10].

4 We assume the points and hyperplanes in the input are sorted.

CVIT 2016
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minimize ∑
h∈H

xh

s.t. ∑
h∈F

xh ≥ 1 ∀ F ∈ F

xh ∈ [0,1] ∀ h ∈H

Figure 3 LP for 2d-Hitting Set.

B Claim 5. If (U,F) has a hitting set of size k, then (P,H, t) has a deletion set of size k.278

Proof. Let H ′ be a hitting set of (U,F) of size k. Since U =H, we now show that H ′ is also279

a deletion set of (P,H). Suppose not; then there is a cell C that is deficient in A(H/H ′).280

Let X be the set of hyperplanes adjacent to C in this arrangement. Since all the hyperplanes281

in H are axis parallel and we are in the d-dimensional version of the problem, it follows that282

X contains at most two hyperplanes from each Hi with 1 ≤ i ≤ p. Also, observe that A(X)283

has the cell C in it. Since C is deficient, by construction of the family F , we know X must284

be in F . But since H ′ ∩X = ∅, this contradicts the fact that H ′ is a hitting set. J285

This completes the proof of Lemma 3. Observe that the V C-dimension of the constructed set286

system is 2d, hence, rounding algorithm from [13] would give an O(d)-approximation. J287

We now observe the following simple fact:288

I Lemma 6. For each set X ∈ F of the 2d-Hitting Set instance (U,F) obtained by applying289

the reduction in Lemma 3 to (P,H, t), it holds that ∣Hi ∩X ∣ ≤ 2, for 1 ≤ i ≤ d.290

Our approximation algorithm uses LP rounding; see Figure 3. While the integrality gap of291

this LP is known to be at most d, the proof is non-constructive [3, Theorem 1]5 and therefore292

it is not known how to efficiently compute a rounded solution with approximation factor293

less than 2d. (The size of each set in the LP is 2d and so in any fractional LP solution each294

set is only guaranteed to have some variable with value at least 1
2d
. Thus a straightforward295

rounding of the LP solution only leads to a 2d-approximation.) Our main contribution,296

therefore, is to design a polynomial-time rounding algorithm that achieves a d-approximation297

for 2d-Hitting Set, and thus also for d-dimensional Anonymity-Preserving Partition.298

I Theorem 7. For every fixed dimension d ≥ 2, there exists a polynomial-time algorithm that299

given a d-dimensional Anonymity-Preserving Partition instance, computes a deletion300

set with size at most d times the optimal size.301

Proof. We describe our rounding algorithm for d = 2 and defer the general case to Appendix B.302

We first use Lemma 3 to reduce the 2-dimensional Anonymity-Preserving Partition303

instance to a Hitting Set instance (U = H1 ∪ H2,F). Observe that by Lemma 6, for304

each set X ∈ F , we have ∣H1 ∩X ∣ ≤ 2 and ∣H2 ∩X ∣ ≤ 2. We now give a 2-approximation305

algorithm for (U,F) by extending the integrality gap result for the LP in [3] (see Figure 3).306

5 Note that in [3], Theorem 1 shows the integrality gap for a variant of hypergraph Vertex Cover. It
is fairly straightforward to see that the Hitting Set instances obtained by applying the reduction in
Lemma 3 can be equivalently expressed as instances of that same hypergraph Vertex Cover variant;
hence, Lemma 3 also gives a reduction to hypergraph Vertex Cover.
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For completeness, we first include the proof that the integrality gap is at most 2, and then307

describe our algorithm.308

Let g ∶ U → [0,1] be an optimal fractional hitting set of (U,F) with value τ∗(U,F).309

Also, let τ(U,F) be the size of an optimal integral hitting set of (U,F). Let B = {(x1, x2) ∈310

[0, 1
2 ] × [0, 1

2 ] ∶ x1 + x2 =
1
2}, and for each x = (x1, x2) ∈ B, let311

T (x) = {h ∈H1 ∶ g(h) ≥ x1} ∪ {h ∈H2 ∶ g(h) ≥ x2}.312

In other words, B can be viewed as the set of all points on the line segment x1 + x2 =
1
2 for313

x1, x2 ∈ [0, 1
2 ], and T (x) can be viewed as the set obtained by rounding g using xi as the314

threshold for each Hi.315

We now prove that for any x ∈ B, T (x) is a hitting set of (U,F). Suppose not; then there316

must be a set X ∈ F such that X ∩ T (x) = ∅. By the definition of T (x), for each hyperplane317

h ∈X ∩Hi, i ∈ {1, 2}, it holds that g(h) < xi. Combining this with the fact that ∣X ∩H1∣ ≤ 2318

and ∣X ∩H2∣ ≤ 2, we get ∑h∈X g(h) < 2(x1 + x2) = 1. This contradicts the fact that g is a319

feasible fractional hitting set of (U,F), and thus T (x) is a hitting set.320

Observe that for any given a, b ∈ [0, 1/2] with a ≤ b, for a uniformly random x = (x1, x2) ∈ B,321

we have Pr(a ≤ xi ≤ b) =
b−a
1/2 for i ∈ {1,2}, i.e., x1 and x2 have a uniform distribution over322

the interval [0,1/2]. We will now use a probabilistic argument to prove that the integrality323

gap is bounded by 2. If we choose a uniformly random x = (x1, x2) from B, and let E(⋅)324

denote the expected value, then we have325

τ(U,F) ≤ E(∣T (x)∣) = ∑
h∈Hi,i∈{1,2}

Pr(g(h) ≥ xi) = ∑
h∈U

min(1, g(h)
1/2

)326

≤ ∑
h∈U

2g(h) = 2τ∗(U,F).327

328

Let T ∶= {T (x) ∶ x ∈ B}. By the above argument, there exists x ∈ B such that T (x)329

is a hitting set of size at most 2τ⋆(U,F). Thus, to get a 2-approximation we will show330

that ∣T ∣ ≤ 2m + 2 and that T can be constructed in polynomial time (see Appendix B,331

Algorithm 1 for pseudocode). We now build a set B′ ⊂ B of size at most 2m + 2 such that332

T ′ ∶= {T (x) ∶ x ∈ B′} = T . We include one point for each hyperplane h ∈Hi with g(h) ≤ 1/2,333

and we include an arbitrarily chosen point between each consecutive pair of these points on334

the line x1 + x2 = 1/2.335

Formally, define B1 and B2 as follows: For each h ∈H1, add (g(h),1/2 − g(h)) to B1 if336

g(h) ≤ 1/2, and for each h ∈H2, add (1/2 − g(h), g(h)) to B1 if g(h) ≤ 1/2. Finally, add the337

point (1/2,0) to B1. Choose a value ε > 0 such that for any distinct (x1, x2), (x
′
1, x

′
2) ∈ B1,338

we have ε < ∣x′1 − x1∣. For each x = (x1, x2) ∈ B1 such that x1 ≠ 1/2, add (x1 + ε, 1/2 − x1 − ε)339

to B2. Finally, add (0,1/2) to B2. Now let B′ = B1 ∪B2.340

We now prove that T ′ = T . We only need to argue that for all x ∈ B/B′, T (x) ∈ T ′.341

Given x = (x1, x2) ∈ B/B′, let x′ = (x′1, x
′
2) be the pair in B1 having the largest x′1 such that342

x′1 < x1. If such an x′ does not exist, then it is easy to see that T (y = (0,1/2)) = T (x). If343

x′ exists, then T (y = (x1 + ε,1/2 − x1 − ε)) = T (x) since x ∉ B′. In both cases y is in B′ and344

thus T (y) = T (x) is in T ′. This proves that T ′ = T and that ∣T ∣ ≤ 2m+2. Our approximation345

algorithm constructs T and outputs the set in T having the smallest size. This completes346

the proof for d = 2. The complete algorithm as well as the details of the general case for347

dimensions d > 2 are presented in Appendix B. J348

The approximation ratio in Theorem 7 is the best possible that can be obtained using349

the particular LP formulation from Fig. 3 because it has an integrality gap of d for the350

constructed hitting set instances [3].351
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3.2 Fixed-Parameter Tractable Algorithm352

Given the equivalence of 2d-Hitting Set and Anonymity-Preserving Partition (refer353

to Lemma 3), an FPT algorithm follows easily (when d is a constant). This is because354

the l-Hitting Set problem is known to admit an exact algorithm running in time6 (l −355

0.924)k ∣U ∣O(1) [14], where k is the size of the hitting set.356

I Theorem 8. The Anonymity-Preserving Partition problem in d dimensions can be357

solved in time (2d − 0.92)k(m)O(1) +O(n), where k is the size a minimum deletion set, m is358

the number of hyperplanes, and n is the number of points.359

4 An NP-hard Anonymity Problem on the Line360

In this section, we show that the Interval Anonymity problem is NP-complete and361

give an exact algorithm running in time 3.08knO(1) +O(m), where k is the solution size.362

Recall that here we are given a set P of n points, which we call markers, a multiset S of363

m segments (intervals) on the real line R, and an integral anonymity parameter t > 0. For364

convenience, when we consider any set of points, we consider them to be ordered from left to365

right according to their relative positions on the line. The set of markers P partitions S into366

equivalence classes, where two segments s and s′ are in the same class if they contain the367

same set of marker points, namely, s ∩ P = s′ ∩ P . We call an equivalence class consisting of368

nonempty segments deficient if it contains less than t segments. The Interval Anonymity369

problem asks us to remove a minimum number of points from P so that every segment of S370

belongs to a non-deficient equivalence class. We now show that Interval Anonymity is371

NP-complete.372

I Theorem 9. Interval Anonymity is NP-complete, and is NP-hard to approximate373

within a factor of (2 − ε), for any ε > 0, assuming the unique games conjecture (UGC).374

Proof. Clearly, the decision version of Interval Anonymity belongs to NP. We give a375

polynomial-time approximation-preserving reduction from Vertex Cover, which is NP-hard376

to approximate within a factor less than 2, assuming UGC [16].377

Construction. Let G be a graph for which we seek a vertex cover of size at most k,
and let n = ∣V (G)∣. We can assume k ≤ n. We construct an instance (P,S, t) of Interval
Anonymity having ∣P ∣ = n + (n − 1)k and t = 2, where we seek the same solution size k.
Let v1, . . . , vn be the vertices of G. For each vertex vi, we create k + 2 markers labeled as
vi, v

(1)
i , v

(2)
i , . . . , v

(k+1)
i , with one exception: the last vertex corresponds to just one marker,

vn. These markers occur in the following order:

v1, v
(1)
1 , . . . , v

(k+1)
1 , . . . , vn−1, v

(1)
n−1, . . . , v

(k+1)
n−1 , vn.

For each (vi, vj) ∈ E(G) with i < j, we add the following five (closed) intervals to S: [vi, vj],378

two copies of [vi, v
(k+1)
j−1 ], and two copies of [v(1)

i , vj]. Since t = 2, we can see that the deficient379

intervals are exactly the ones of the form [vi, vj].380

Proof of equivalence. For any vertex cover S of G, if we remove the markers (without381

superscripts) corresponding to the vertices in S, we obtain a solution for the Interval382

Anonymity instance. For the reverse direction, suppose we have a deletion set S for (P,S, t)383

6 When 2d ≥ 15, there is an algorithm that runs in time O(ck +m), c = d − 1 + 1
d−1 [19].
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of size at most k. Since our segments only have endpoints of the form vi, v(1)
i , or v(k+1)

i ,384

we would have had to include in S all of the (k + 1)-superscripted markers between two385

consecutive vertices if we wished for these to affect feasibility. Therefore, we can remove386

from S any superscripted markers and still maintain a feasible solution. Now, S naturally387

corresponds to a vertex cover for G. J388

We now turn to a 4-approximation and an exact algorithm for the Interval Anonymity389

problem. Since this problem only cares about segments s such that s ∩ P ≠ ∅, we will from390

now on assume that for all segments s ∈ S, s ∩ P ≠ ∅. Given an instance (P,S, t) of the391

Interval Anonymity problem, we now associate a set of at most four markers from P to every392

equivalence class X. We denote this set by MX . Let s be a segment in X, and let l and r be393

the leftmost and the rightmost markers in the set s∩P . Also, let l′ and r′ be the markers in394

P to the left of l and to the right of r, respectively, if they exist. Then, MX = {l′, l, r, r′} is395

the set containing these markers. Note that l might be equal to r and l′ and r′ might not396

exist, and thus MX is a set of size at most four.397

398

4-Approximation: The idea that each equivalence class can be associated with a set of at399

most four markers immediately gives us a polynomial-time 4-approximation algorithm and400

an exact algorithm running in time 4k(m+n)O(1), where k is the size of a minimum deletion401

set. The key here is to observe that (i) All segments in an equivalence class will remain402

in the same equivalence class in the final solution, and (ii) In order to make a deficient403

equivalence class X non-deficient, we need to remove at least one of the markers from MX .404

Then, the 4-approximation algorithm is as follows: (i) Initialize the deletion set D = ∅;405

(ii) Repeatedly pick an arbitrary deficient equivalence class X and add all the markers in406

MX to D, as long as there is a deficient equivalence class; (iii) Finally, output D. For the407

exact algorithm, instead of adding all of the markers from MX to the deletion set, we guess408

which one of these markers to add to the deletion set (branching).409

We obtain a better exact algorithm for this problem, similarly to the Anonymity-410

Preserving Partition problem, by reducing to 4-Hitting Set.411

I Theorem 10. The Interval Anonymity problem can be solved in time 3.08knO(1)+O(m),412

where k is the size a minimum deletion set.413

Proof. We first reduce our problem to 4-Hitting Set and then use the known (3.08)k ∣U ∣O(1)
414

time algorithm [14] for 4-Hitting Set to solve our problem. Our focus now is to describe the415

reduction. Given an instance (P,S, t) of the Interval Anonymity problem, we construct416

a 4-Hitting Set instance with universe U = P and family F being the set of all nonempty417

subsets Q of P of size at most four such that the instance (Q,S, t) contains some deficient418

equivalence class.419

Now we prove the forward direction: If (P,S, t) has a deletion set of size k, then (U,F)420

has a hitting set of size k. Let P ′ ⊆ P be a deletion set of size k of (P,S, t). Then, there is421

no equivalence class in (P /P ′, S, t) that is deficient. Since U = P , we now show that P ′ is422

also a hitting set of (U,F). Suppose not; then there is a set Q ∈ F that contains no markers423

from P ′. We know by construction of F that there is some deficient equivalence class X in424

(Q,S, t). Let s be a segment in X, and let X ′ be the equivalence class that s belonged to425

in (P /P ′, S, t). Since segments in X ′ always remain together in their resulting equivalence426

class even after removing additional markers, it is easy to see that if X ′ is not deficient in427

(P /P ′, S, t), then X is not deficient in (Q,S, t). This contradicts the fact that X is deficient428

and thus completes the forward direction.429
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Next, we show the reverse direction: If (U,F) has a hitting set of size k, then (P,S, t) has430

a deletion set of size k. Let P ′ be a hitting set of (U,F) of size k. Since U = P , we now show431

that P ′ is also a deletion set of (P,S, t). Suppose not; then there is a deficient equivalence432

class X in (P /P ′, S, t). We show that MX from (P /P ′, S, t) belongs to F , thus contradicting433

the fact that P ′ is a hitting set of (U,F) since MX does not have any marker from P ′. To434

satisfy an equivalence class E, at least one of the markers in ME must be deleted. Therefore,435

deleting all markers from P /P ′ except those from MX will make X a deficient equivalence436

class in (MX , S, t). Thus, by construction, MX belongs to F . J437

5 Conclusion438

We considered a natural multidimensional space partitioning problem, showed that it is439

NP-complete in all dimensions d ≥ 2, and designed a d-approximation algorithm and FPT440

algorithm parameterized by solution size. Although we described our results for the case441

p = d, it is easy to see that the algorithm in fact guarantees a p-approximation for the more442

general case, where p ≤ d is the number of nonempty families of hyperplanes. We also showed443

that a simple Interval Anonymity problem is NP-complete even in one dimension, and444

gave approximation and FPT algorithms for that as well. Improving our approximation445

factors is an interesting open problem.446
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A Proof of Theorem 2501

We show that the Anonymity-Preserving Partition problem is easy to solve in the one-502

dimensional case in time O(mn). Furthermore, this special case can be solved in time503

O(m + n) if every cell in the arrangement is nonempty. In both cases, we assume the points504

and hyperplanes in the input are pre-sorted.505

Proof. (of Theorem 2) We design a dynamic-programming algorithm to solve the problem
in the one-dimensional case. Let i be the dimension in which we have a nonempty set of
hyperplanes. We have m = ∣Hi∣ = ∣H ∣. We will denote the cells by f1, . . . , fm+1 and the
hyperplanes by h1, . . . , hm, so that they occur in the following order in space:

f1, h1, f2, h2 . . . , hm, fm+1.

Let ni be the number of points in the cell fi. We will think of hyperplanes and cells with506

smaller indices in this ordering as being “to the left.”507

For each 1 ≤ i ≤ m + 1, let Li be the set of hyperplanes to the left of the cell fi. We508

have L1 = ∅. For a set of hyperplanes H ′, let fi(H
′) denote the cell containing fi in the509

arrangement A(H/H ′). For example, if H ′ = {h1}, then f2(H
′) is the cell formed by the510

union of f1 and f2. For every 1 ≤ i ≤m + 1 and every 0 ≤ s ≤ t, we define the following value:511

f(i, s) = minimum possible size of a set H ′ ⊆ Li such that in the arrangement A(H/H ′),512

any nonempty cell to the left of fi(H
′) contains at least t points, and the cell513

fi(H
′) contains at least s points.514

515
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The value we need to compute is f(m + 1, t). We compute f(m + 1, t) using the following516

recursive formula:517

f(i, s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if i = 1 and s ≤ n1

∞ if i = 1 and s > n1

min (f(i − 1,0) + 1, f(i − 1, t)) if i > 1 and s ≤ ni

f(i − 1, s − ni) + 1 if i > 1 and s > ni.

518

The return value f(m + 1, t) is always finite since we assume n ≥ t. This concludes the519

algorithm — we leave the formal proof of correctness to the reader. It is easy to see that the520

running time is O(mt + n), which is bounded by O(mn).521

We now proceed to the case when the instance is not only one-dimensional, but also has522

the property that every cell in the arrangement is nonempty. In this case, the problem can523

be solved by a greedy algorithm, which proceeds as follows:524

Initially, set q = 1 and set S = ∅.525

Repeat the following steps while q ≤m + 1:526

Set j to be the smallest j such that ∑j
i=q ni ≥ t. Set S′ = {hq, . . . , hj−1}. (If j = q, then527

S′ is empty.) If there is no such j, this means we have reached the last of the cells. In528

that case, set j to be the largest j such that ∑m+1
i=j ni ≥ t, set S′ = {hj , . . . , hm}, and529

break once this iteration is complete.530

Set S = S ∪ S′.531

Set q = j + 1.532

Return S.533

Note that there always exists a j such that ∑m+1
i=j ni ≥ t since we assume ∑m+1

i=1 ni = n ≥ t.534

The formal proof of correctness is straightforward, and we leave it to the reader. J535

B Proof of Theorem 7 for d ≥ 3536

In this section, we prove Theorem 3 for d ≥ 3 and provide the pseudocode for the d = 2537

case. Recall that Theorem 7 promises a d-approximation algorithm for the d-dimensional538

Anonymity-Preserving Partition problem.539

Proof. (of Theorem 3 – for d ≥ 3) Given an instance (P,H, t) of the d-dimensional Anonymity-540

Preserving Partition problem, we use the reduction in Lemma 3 to obtain a 2d-Hitting Set541

instance (U,F). Recall that U = H = ⋃1≤i≤dHi, i.e., U is a union of d disjoint sets of542

hyperplanes Hi.543

Next, we partition U into three sets S1, S2, S3 such that for all X ∈ F , ∣X ∩ Si∣ ≤ d for544

1 ≤ i ≤ 3. When d is even, we let545

S1 = ⋃
1≤i≤ d

2

Hi, S2 = ⋃
d
2+1≤i≤d

Hi, S3 = ∅.546

When d is odd, we let547

S1 = ⋃
1≤i≤⌊ d

2 ⌋
Hi, S2 = ⋃

⌊ d
2 ⌋+1≤i≤d−1

Hi, S3 =Hd.548

We define si = max
X∈F

∣X ∩ Si∣, for i ∈ {1,2,3}. From Lemma 2, we know that for all X ∈ F ,549

∣X ∩Hi∣ ≤ 2; hence, s1 + s2 + s3 ≤ 2d. We now describe a d-approximation algorithm for550
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(U,F). To this end, we first use a result from [3] which bounds the integrality gap for the551

LP from Fig. 3 on the instance (U,F) by d. For completeness, we include the proof from [3],552

and then build upon it to give an approximation algorithm.553

Let g ∶ U → [0,1] be an optimal fractional hitting set of (U,F) with value τ∗(U,F).554

Furthermore, let τ(U,F) be the size of an optimal integral hitting set. We now construct a555

set B ⊆ [0,1/d]3. Fix four points:556

q1 = (
s1 + s2 − s3

2ds1
,0, 1

d
) , q2 = (

1
d
,
s2 + s3 − s1

2ds2
,0)557

q3 = (
s1 + s3 − s2

2ds1
,
1
d
,0) , q4 = (0, s1 + s2 − s3

2ds2
,
1
d
)558

and let559

B(1)
= [q1, q2], B(2)

= [q3, q4], B(3)
= [q1, q3], B(4)

= [q2, q4],560

where [qi, qj] denotes the line segment between the points qi and qj . We define B =561

B(1) ∪B(2) ∪B(3) ∪B(4).562

Notice that the coordinates of q1, q2, q3, q4 all satisfy the equation s1x1 + s2x2 + s3x3 = 1,563

and hence, this equation is satisfied by all tuples x = (x1, x2, x3) ∈ B. Hence, using an564

argument similar to that used for d = 2, the sets T (x) constructed as follows are indeed565

hitting sets:566

T (x) = {h ∈ S1 ∶ g(h) ≥ x1} ∪ {h ∈ S2 ∶ g(h) ≥ x2} ∪ {h ∈ S3 ∶ g(h) ≥ x3}.567

Let T = {T (x) ∶ x ∈ B}. Next, we define a probability measure µ over B such that for568

any given a, b ∈ [0,1/d] with a ≤ b, for a randomly chosen tuple (x1, x2, x3) ∈ B, we have569

Pr(a ≤ xi ≤ b) =
b−a
1/d for 1 ≤ i ≤ 3, i.e., the xi’s have a uniform distribution over the interval570

[0,1/d]. For 1 ≤ i ≤ 4, let µi be the uniform measures on the line segments B(i) such that571

µ1(B
(1)

) = µ2(B
(2)

) =
(s1 + s3 − s2)(s2 + s3 − s1)

2s3(s1 + s2 − s3)
,572

µ3(B
(3)

) =
(s2 − s3)(s2 + s3 − s1)

s3(s1 + s2 − s3)
,573

µ4(B
(4)

) =
(s1 − s3)(s1 + s3 − s2)

s3(s1 + s2 − s3)
.574

We set µ = µ1+µ2+µ3+µ4. It can be verified that ∑4
i=1 µi(B

(i)) = 1, and hence, µ(B) = 1.575

At this stage, to argue as in the case d = 2 in order to show the bound on the integrality gap,576

it remains to show that xi indeed has a uniform distribution on [0,1/d] for all 1 ≤ i ≤ 3.577

It is easy to see that for a randomly chosen x = (x1, x2, x3) ∈ B, x3 has a uniform578

distribution over [0,1/d]. This is because each µi is a uniform measure over B(i), and x3579

takes all values from [0,1/d] on each B(i) with 1 ≤ i ≤ 4. It is easy to see that x1 is uniform580

over B(4) using the same argument. Next, we observe that x1 is uniform on each of the line581

segments [0, s1+s3−s2
2ds1

], [ s1+s3−s2
2ds1

, s1+s2−s3
2ds1

], [ s1+s2−s3
2ds1

, 1
d
]. Recall that µ1(B

(1)) = µ2(B
(2));582
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hence, the situation for the first and the third line segment is the same. Without loss of583

generality, assume that 0 ≤ s3 ≤ s2 ≤ s1 ≤ d. Hence, we only need to check584

µ3(B
(3))

µ2(B(2))
=

s1+s2−s3
2ds1

− s1+s3−s2
2ds1

s1+s3−s2
2ds1

,585

which indeed holds. Hence, x1 is uniformly distributed. With a similar argument, it can be586

shown that x2 is uniformly distributed. At this stage, similarly to the d = 2 case, we can587

compute the expected size of T (x) to obtain the desired bound d on the integrality gap.588

Next, we show that there are only O(m) distinct rounded hitting sets T (x) constructed589

using x ∈ B. Observe that while traversing on any line segment B(i) for 1 ≤ i ≤ 4, the hitting590

set T (x) may change at points x ∈ B(i) for which there exists 1 ≤ j ≤ 3 such that g(h) = xj591

for some h ∈ Sj , i.e., when the plane xj = g(h) intersects B. Note that the hitting set T (x)592

does not change for the points on the open line segment between two consecutive intersection593

points on B(i) obtained from the aforementioned planes (here, the open line segment (xi, xj)594

is the set of all points on the line segment [xi, xj] except for the endpoints). Since each595

such plane can have at most four intersection points with B, the number of distinct rounded596

solutions is O(m), where m = ∣U ∣.597

We iterate through all distinct rounded solutions and return a hitting set with minimum598

cardinality. This completes the proof of Theorem 7. J599

Algorithm 1 2-approximation for Anonymity-Preserving Partition in 2 dimensions

1: Input: Anonymity-Preserving Partition instance (P,H =H1 ∪H2, t)

2: Output: 2-approximate Deletion Set
3: U ←H

4: F ← {X ⊆ U ∶ A(X) is deficient, ∣X ∩Hi∣ ≤ 2,∀i ∈ {1,2}}
5: g ← optimum fractional hitting set of (U,F) ▷ g ∶ U → [0,1]
6: B1 ← {(g(v),1/2 − g(v)) ∶ v ∈H1, g(v) ≤ 1/2}⋃

{(1/2 − g(v), g(v)) ∶ v ∈H2, g(v) ≤ 1/2}⋃{(1/2,0)}
7: ε← arbitrary positive value less than min

(x1,x2),(x′1,x′2)∈B1
∣x1 − x

′
1∣

8: B2 ← {(x1 + ε, x2 − ε) ∶ (x1, x2) ∈ B1, x1 ≠ 1/2} ∪ {(0,1/2)}
9: B ← B1 ∪B2

10: for x = (x1, x2) ∈ B do
11: Tx ← {v1 ∈H1 ∶ g(v1) ≥ x1} ∪ {v2 ∈H2 ∶ g(v2) ≥ x2}

12: xmin ← arg min
x∈B

∣Tx∣

13: return Txmin ▷ Txmin is a 2-approximate deletion set
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