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Abstract

Problems in Computational Social Choice on Restricted Domains

by

Chinmay Sonar

Social Choice is the formalized study of the aggregation of individual preferences towards

collective decision making. �e task of checking the feasibility of the preference aggregation

schemes in the real world context comes under Computational Social Choice (COMSOC).

In this thesis, we consider the problems from the three pillars of COMSOC - Voting, Fair

Division, and Matching under Preferences.

Several appealing aggregation schemes turn out to be computationally hard. �e work from

this thesis largely focuses on studying problems in these areas in the context of domain re-

strictions. We consider popular notions of domain restrictions such as Single-Peaked (SP),

Single-Crossing (SC), and Euclidean preference domains. �e motivation for studying struc-

tured domains is to explore if certain properties that are elusive for in the general case can

be achieved by considering appropriate and practically relevant domain restrictions. For in-

stance, some voting rules that are hard to compute in general become tractable on restricted

domains. Another illustration is that some domains admit mechanisms that are not vulnerable

to strategic behavior. We o�en �nd that simply projecting mechanisms for general domains

to structured domains does not give us enough leverage, so the quest is usually to design new

mechanisms that take advantage of the speci�c structure of the domain under consideration.

B Voting: Our work in voting mainly focuses on the Chamberlin Courant (CC) voting

rule. Several fundamental problems such as winner determination has been shown to

be hard on for CC rule. We focus on the restricted and nearly restricted domains for this

problem. Our work provides a �ne-grained analysis of the boundary between tractabil-

ity and intractability using parametric analysis. We also consider the e�ect of small

perturbations in election instance formally captured by the concept of the robustness

radius and provide an XP algorithms along with the matching hardness results.

B Stable Matching: For many hard matching problems, we show that the hardness per-

sists even the domain restrictions. We also provide an interesting addition to a class of

instances which admit a unique stable matching (marriage for the bipartite case). We

introduce a new variant of the matching problem called ’Matching Critical Sets’ and

pin down the complexity of the same. Finally, we work on the special cases of (a,b)-

supermatch. We also analyze the performance of the Gale-Shapley mechanism on in-

stances with restricted domains through simulations.
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B Fair Division: We study fair allocation of indivisible items arranged on a path under the

constraint that only connected subsets of items may be allocated to the agents. We study

the problem for both Envyfreeness (EF1) and Equitability (EQ1). We show that achiev-

ing EF1 or EQ1 in conjunction with well-studied measures of e�ciency (such as Pareto

optimality, non-wastefulness, maximum egalitarian or utilitarian welfare) is computa-

tionally hard even for binary valuations. On the algorithmic side, we show that for any

�xed ordering of agents, an Eq1 allocation with the highest egalitarian welfare among all

consistent allocations can be e�ciently computed. For structured binary valuations, we

obtain polynomial-time algorithms for non-wasteful and pareto optimal EF1 and EQ1

allocations.
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Chapter 1

Introduction

1.1 Social Choice

Social Choice deals with the aspects of collective decision making for a variety of natu-

ral issues in our society. A canonical example of collective decision making is elections.

For millennia, right from the beginning of the Roman Empire, the way of selecting local

authorities by accounting opinions/ preferences of concerned people through elections

(commonly known as Elections in the Roman Republic) has been prevalent. Apart from

elections, consider the issues such as �nding a match between two entities for perform-

ing a speci�c task given several participating entities in the market and their willingness

to get paired with others or �nding a reasonable way to divide the le�over pie among

the siblings. We refer the reader to (BCE
+

16, Chapter 1) for a detailed account of history

and developments in social choice.

While designing procedures for issues such as voting, matching or fair division, we expect

any rational procedure to have some sensible properties, and to avoid some undesired

traits. For example, consider the election system in some countries in Africa and South-

East Asia. It might not be a popular vote around the world that using these systems is a

good practice. In particular, it is fair to assume that an election procedure should not be

dictatorial. Similarly, giving out complete le�over pie or not dividing it at all (an empty

allocation) are valid ways of allocations unless the aim is to �nd fair or e�cient division

of the cake. Hence, evaluating social choice procedures against some standard axioms

or demanding them to have certain properties is typical.

Procedures to solve social choice problems are commonly known as mechanisms. When

the market size is large, the time for computing outcome of the decision mechanisms

becomes vital. In such cases, it is desirable to �nd e�cient mechanisms for social choice

problems at hand for mechanisms to be pragmatic. O�en, the mechanisms which satisfy

appealing properties turns out to be computationally ine�cient. �e �eld of Compu-

tational Social Choice (COMSOC) deals with the computational complexity of mecha-

nisms. Here, the quest is for �nding e�cient mechanisms whenever exists, or showing

limitations of mechanisms by proving appropriate complexity lower bounds.

In this investigation, we consider three pillars of social choice namely Voting (Sen87),

Matching (GI89), and Fair Division (Tay04). We start with an introduction to each of

these and try to sketch the landscape of related results to place our work in the context.

1



2 Chapter 1. Introduction

1.1.1 Voting

Two primary reasons for employing elections in various scenarios are based on need

and necessity. Consider for instance an election for electing a president of the country,

in this case; it is the need of the nation to choose one person to represent and handle the

course of actions for certain period to maintain smooth functioning. Consider another

situation where a commi�ee of �eld experts has to choose a certain number of applicants

to award a fellowship due to budget constraints. In this case, it is necessary for commi�ee

members to aggregate the opinions, and select a limited number of deserving applicants.

In a common election se�ing, there is a set of candidates competing for a position(s)/

award, and there is a set of voters who express there preferences (opinions) over the

candidates. Voting procedures aim to answer the following question – “how individual

preferences can be aggregated to give a social choice or election outcome that re�ects

the interests of the electorate?” (Bra08). In order to answer this question, the agency

conducting an election has to elicit the preferences of the voters. �ere are several ways

to collect these preferences; the extreme two cases would be asking for complete strict

ordering (pairwise comparisons between all pairs of candidates) while other would be to

only ask for the top preference of each voter. It is rational to expect certain fundamen-

tal properties from any “reasonable” voting rule. Such properties are known as axioms

in the voting literature. Arrow performed the �rst meticulous axiomatic study (Arr51)

and demonstrated an impossibility theorem which states that there does not exist any

reasonable preference aggregation scheme which simultaneously satis�es all fairness

criteria at once. Arrow developed a mathematical model to evaluate all voting rules. It

is possible to bypass the impossibility theorem by relaxing the set of properties satis�ed

by the rule. Another way out is to consider voting rules on restricted domains where it

is possible to obtain voting rules which simultaneously satis�es all fairness criterion.

In last ��y years, several voting rules (preference aggregation schemes) each satisfy-

ing speci�c set of properties are proposed and are well studied (BF02), (BCE
+

16). As

described earlier for the ways to elicit the preferences, generally the voting under con-

sideration drives the elicitation as some rules only require the information about the top

preferences (plurality) whilst others need complete rankings (Borda voting rule) (Bor81).

�e problem with the plurality is the ignorance for voter’s preferences a�er the top pref-

erence, to tackle this a well-studied class of voting rules is known as positional scoring

rules. Here, the voter’s submit complete rankings, and each candidate receives a �xed

score if it appears at a certain position in a vote. An issue with such rules is the high

elicitation cost since it is conceivable that obtaining such exhaustive information is not

cheap. �is motivates one direction of problems in voting, namely preference elicitation

where the aim is to minimize the amount of elicitation required to compute an outcome

of the election. Another natural direction of problems deals with the complexity of pref-

erence aggregation or winner determination. Here, the task is to compute an outcome of

the election in terms of the winner. At last, an important set of voting problems are the

control problems which deals with issues such as manipulation and bribery in voting. We

refer the reader to (BCE
+

16) for known results and open problems in these directions.

Recall the example of shortlisting candidates for a particular fellowship. Here, the ob-

jective is to �nd a group of a certain number of most deserving candidates rather than

one unique winner. Similarly, consider the problem of shortlisting a small list of movies

2



Chapter 1. Introduction 3

to include on an airplane such that passengers can a�ain maximum satisfaction. Both

of these scenarios and many such others aims to select commi�ee rather than a single

winner, this motivates the need for Multiwinner rules. One way to design multiwinner

voting mechanisms is to naturally generalize single-winner rules to their multiwinner

versions e.g. Plurality, t-Approval, Borda, STV, SNTV, etc. whilst the other approach

would be to design completely new rules such as Chamberlin-Courant (CC83) and Mon-

roe (Mon95). Properties of Multiwinner rules are discussed thoroughly in (EFSS17). �e

paper (EFSS17) also provides one way of classifying these rules based on the way of

commi�ee selection.

Another important trait recognized for Multiwinner rules is proportional representation.

We go back to the example of Movie shortlisting, the aim here is to have a diverse set of

movies which would be appealing for passengers with every shade of preferences rather

than selecting a collection of overall “best” set of movies (say movies with highest IMDB

ratings). Note that this need not be the case of with fellowship shortlisting where one

can choose best applicants. Black expressed proportional representation as:

“A scheme of proportional representation a�empts to secure an assembly whose mem-

bership will, so far as possible, be proportionate to the volume of the di�erent shades of

political opinion held throughout the country; the microcosm is to be a true re�exion of

the macrocosm” ((Bla58), (BSU13)).

�e Chamberlin-Courant rule (CC83) and Monroe rule (Mon95) are well studied propor-

tional representation rules. In our work, we focus on Chamberlin-Courant (CC) rule

which comes under positional scoring rules (EFSS17). In CC-rule, each voter is repre-

sented by a top candidate amongst the commi�ee members according to her prefer-

ences. For both CC ((PRZ08), (LB11)) and Monroe the Winner Determination problem

is NP-hard. We present our results on certain problems on special preference domains

with CC-rule in Chapter 3 and Chapter 4.

1.1.2 Matching

Traditionally, a stable marriage problem (a two-sided matching problem) is de�ned by a

set of men and women; each of which submits their preference order over agents from

opposite sex to a centralized administrator. �e task here is to �nd pairs such that no

man-woman pair should be inclined to elope. Set of pairs with this property is known as

stable matching. A positive answer to the fundamental question of the existence of such

matchings was presented in the seminal Gale-Shapley paper (GS62) through an e�cient

deferred acceptance algorithm. �e algorithm has several appealing combinatorial prop-

erties (Rot08). �e problem was generalized to many-one matchings in two-sided mar-

kets with important applications in hospital-resident program (Rot84) in US, and school

admissions in Singapore (TST01). Apart from these several other generalizations were

introduced (IM08) including the problem of �nding Stable Matchings in non-bipartite

se�ing, which is commonly known as Stable Roommates problem.

�e guarantees of existence and e�cient computation from Deferred Acceptance algo-

rithm holds only when agents submit complete preference orders i.e. the pairwise pref-

erences for all pairs of agents (note that for such instances, even the Stable Roommates

problem can be solved e�ciently (Irv85)). As the market size increases, it is not feasible

3



4 Chapter 1. Introduction

for all agents to submit preferences over all other agents since a large fraction of those

might be completely irrelevant for it. Also, in some case, two options may be equally

liked/disliked by an agent. In such cases, agent should be allowed to submit incomplete

preferences (i.e. declaring some agents as unacceptable), and preferences with indi�er-

ence/ties. For the stable matching instances with incomplete preferences and ties, the

existence of stable matching is not always guaranteed, and the complexity �nding these

matchings changes sharply making problems a lot harder. In Chapter 5, we consider

several optimization problems (ILG87) for such stable instances with special preferences

(MS10), (BFK
+

17).

Another line of research in matching focuses on the ubiquitous phenomenon of the

strategic behavior of agents. As a complement of Gibbard-Sa�erthwaite theorem in vot-

ing, Roth (Rot82) showed that there does exist any stable matching mechanism for which

stating true preferences is a dominant strategy for all agents. �ere are two popular mod-

els of manipulation – truncation and permutation. Of the two, truncation is shown to be

a more powerful model in terms of gain (RR99; CS14) through manipulation.

Recall a stable matching instance with ties and incomplete preferences. For such in-

stances, there might exist several ways of transforming these instance into an instance

with complete preferences for all agents (note that this can be achieved by breaking ties

in di�erent ways and by trying all possible order of completions for incomplete pref-

erences). Hence, given a stable matching instance with ties or incomplete preferences,

one can ask questions such as, does there an extension of the given instance which ad-

mits unique stable matching? Or an extension which admits a stable matching which

matches certain agents? In the recent paper by Menon and Larson (ML18), they consider

another natural question of �nding a �xed matching which admits a minimum number

of blocking pairs over all possible extensions to complete preference orders. In section

5.8 and Chapter 6 we provide preliminary results on some of these questions.

We refer the reader to the Introduction Section 5.1 from Chapter 5 for thorough details

on known results for these problems.

1.1.3 Fair Division

Consider a classic example of a division of birthday cake (say) at Alice’s birthday party.

Amongst her friends, Bob, Charlie and Daniel decide to stay back a�er party to help Alice

�nish-up the delicious chocolate tru�e cake. All four agents seek for di�erent parts of

cake: Alice wants a part with a piece of chocolate, Bob likes the part with Cherry, Charlie

wants a piece on the border, and Daniel likes all parts equally. A task here is to divide the

cake among these four agents by prioritizing their choices in such a way that each agent

prefers its share to anyone else’s (such allocations are known as envyfree allocations).

Another example is fair allocation is distribution courses among students according to

their preferences. We point out an intrinsic di�erence between the two examples: cake

is a divisible resource whilst the courses is an indivisible resource. We refer the reader

to following surveys (BT96), (Bar05), (�o11) for thorough introduction of model and

several other applications.

For the case of divisible resources, Brams and Taylor (BT00) showed an existence of

Envyfree (EF) allocations. When we move to indivisible resources, the result does not

4



Chapter 1. Introduction 5

hold; consider the case of two agents and one good with both agents wish to have the

good. Hence, for indivisible goods Budish (Bud11) introduced a relax the condition of

EF to EF1 which is envyfreeness up to one good. �is means that every agent prefers

its allocation to an allocation obtained by removing some good from the allocation of

other envious agents. EF1 allocations always exist, and can be obtained by the famous

envy-graph algorithm by Lipton et al. (LMMS04) or by a simple Round-Robin procedure

(CKM
+

16).

Another fairness notion considered in literature is Equitability (EQ). An equitable allo-

cation implies the same happiness (utility) for each agent according its valuation at the

end of the protocol. For two agents, (BT00) gave an adjusted winner procedure which

returns Envyfree and Equitable allocation. �e existence of Equitable allocation for di-

visible goods was given by (Alo87). Again, with similar reasoning for the case of indi-

visible goods, EQ allocations are not guaranteed to exist. We analogously de�ne EQ1

allocations. Existence of such allocations was shown by (Chè17). In Chapter 8 we show

existence of EQ1 allocations in �eorem 31, and give a simple procedure to compute such

allocations.

In Chapter 7 we consider connected EF1 allocation on a path for indivisible goods. Next,

in Chapter 8, we consider EQ1 allocations for same se�ing.

1.2 Restricted Domain in Social Choice - Background

and motivation

In the previous section 1.1, we alluded to the special/restricted domains several times. In

practice, it is atypical to have completely arbitrary preferences of participating agents.

More o�en, these preferences are driven by an underlying philosophy. For example,

consider the case of political elections from West. Usually, there are two major parties,

with one having the le�-wing ideology and the other with the right-wing ideology. Con-

sider an axis with the le�most side being extreme le�-wing candidate, the rightmost side

being extreme right-wing candidate, and in with neutral candidates around the center.

In general, it is observed that each voter’s ideology lie at some point on this axis, and

hence, she prefers the candidate close to that point the most (“peak”). For the rest of

the candidates the preference decreases as we move away from the “peak” from both

sides. Such preferences are known as ‘single-peaked’ preferences (Bla48). Ballester et al.

(BH11) gave a nice characterization of these domains.

Another example domain restriction is ‘single-crossing’ domains. Here, instead of can-

didates, we order voters such that for each pair of candidates there exist a single point

at which voters switch from preferring one over the other. Single-crossing domain was

de�ned by Roberts (Rob77) in his seminal paper of re-distributive income taxation. �e

characterization for single-crossing domains, and reference to several applications is

given in (BCW13). In 1D-Euclidean domain, we arrange both candidates and voters on

the axis, and the preferences of voters are derived from their euclidean distance from

respective candidates (Coo50). Consider a scenario of the division of customers among

the outlets of McDonald’s franchise in a city. Given all amenities same across all outlets,

the customers will prefer the one closest to their homes. For this case, we can place both

5



6 Chapter 1. Introduction

the outlets (candidates) and customers (voters) on a line according to their locations, and

derive the preferences of customers over the outlets.

In India, the admissions to the Indian Institute of Technology (IITs) is made using the

ranks of the students in Joint Entrance Examination (JEE). Several popular ranking agen-

cies have consistently ranked IIT Bombay, IIT Delhi, and IIT Kharagpur as the top three

institutes in the country for the past few years. Consider the preferences of top hundred

students in JEE. A large fraction of these students will place these three in institutes as

their top choices, and it is unlikely to �nd one of these three institutes at the bo�om of

someone’s preference list. In this case, the di�erence between the highest and lowest

rank for these three institutes in the preferences of students is bounded. Such candidate

range bounded preferences occur in many other scenarios in the market. Betzler et al.

(BU09) motivated the study of many such preferences and gave e�cient algorithms with

these range parameters for Kemeny elections.

A prime motivation to study restricted domains is that these domains admit several de-

sirable properties that are elusive on the general domains. One such property is e�cient

algorithms in certain cases for which the problem is hard on general domains. A few

examples of this are: Single crossing domains are non-manipulable (Mou80) and admit

transitivity of majority rule (Ina69). For the single-peaked and single-crossing domains,

problem of �nding Chamberlin-Courant winner is tractable (BSU13), (SYFE15). In sta-

ble matching, both 1D-Euclidean domains and narcissistic single-peaked domains admit

unique stable matching which gives non-manipulability, and these the there exist a sub-

linear time mechanism to �nd a stable matching (BIT86).

�ere have been many a�empts to generalize the described domains. Demange (Dem12)

generalized single-crossing to intermediate property on median graph. �e paper by

Barberà and Moreno (BM11) generalized both single-peaked and single-crossing prop-

erty to obtain top-monotonicity which retains the existence of Condorcet winner. In

(CGS12) authors de�ne single-peakedness for a bounded sized cluster of candidates

known as “single-peaked width” (we note that analogous notion is de�ned for single-

crossing pro�les). Erdélyi et al. (ELP13) study computational aspects of nearly single-

peaked electorates. Peters (Pet17) consider recognition of d-dimensional Euclidean do-

mains.

In this thesis, for Chapter 3 and Chapter 4 we explore certain problems with Chamberlin-

Courant rule on nearly restricted domains by using known and newly de�ned notions of

generalized domains. In Chapter 5 and Chapter 6 we investigate hard matching problems

on known restricted domains.

1.3 Contributions and structure of the thesis

In this section, we provide a brief overview of our contributions in voting, matching, and

fair division.

6



Chapter 1. Introduction 7

1.3.1 Part I - Voting

In voting we �x the voting rule to Chamberlin-Courant (CC83) for our work. Given

an election instance the Winner Determination problem was known to be polynomially

solvable on single-peaked (BSU13) and single-crossing (SYFE15) domains.

In Chapter 3, we focus on the Winner Determination problem for the Chamberlin-

Courant rule on “nearly” restricted domains. We consider two natural generalizations

of restricted domains. In our �rst generalization, we consider the pro�les which are

k−voters / k−candidates away from single-peaked or single-crossing domains i.e. by

deleting at most k−voters/candidates one can obtain the pro�le which belongs to the

restricted domains. Finding this ‘deletion’ set is known to be e�cient (EL14). With this

generalization, we show FPT algorithms for the case of candidate deletion and XP al-

gorithms for voter deletion parameterized by the size of the deletion set for both single-

peaked and single-crossing domains.

In another a�empt at generalizing the restricted domains, we de�ne r-composite single-

peaked (de�nition 2) and r-crossing pro�les (de�nition 4). For 3-composite single-

peaked domains and 3-crossing domains we show that it is NP-hard to compute the

CC-Winner. For the detailed account of results we refer the reader to Section 3.1.

Our work in Chapter 4 is based on the concept of Robustness Radius for a voting rule.

Recently, (BFK
+

17) de�ned the concept of Robustness Radius. �e problem of computing

the robustness radius for Chamberlin-Courant rule was shown to be W[1]-hard with

respect to the size of the commi�ee. We complement this result by providing an XP
algorithm with the same parameter. Next, we extend the result for approval se�ing to

show W[1]-hard, and complement with the XP algorithm with respect to the size of the

commi�ee. Finally, we turn to the generalized restricted domains (note that for restricted

domains, the problem admits a trivial XP algorithm with parameter robustness radius).

We show hardness results for generalizations of both single-peaked and single-crossing

domains. We refer the reader to Section 4.1 for further details.

Acknowledgements. Chapter 3 is based on joint work with Neeldhara Misra and P. R.

Vaidyanathan and has appeared in ADT 2017 (MSV17). �e work in Chapter 4 is largely

based on joint work with Neeldhara Misra, and has appeared in SOFSEM 2019 (MS19).

1.3.2 Part II - Matching

Our main focus of Chapter 5 is to investigate popular problems in matching on restricted

domains. We consider several hard matching problems, and the issue of strategic be-

haviour (manipulation) on commonly known restricted domains in stable matching lit-

erature, and other well studied domains in the computational social choice. Next, we

provide a short summary of our results in matching, we refer the reader to Subsection

5.1.1.

Bredereck et al. (BCFN19) posed a question of �nding a stable matching for Stable Room-

mates with Ties and Incomplete preference parameterized by the “degree of incomplete-

ness”. We show the problem to be W[1]-hard even on single-peaked and single-crossing

domains. Next, for Sex-Equal stable matching and Egalitarian stable matching, we show

that the hardness persists even on the restricted domains.

7



8 Chapter 1. Introduction

For the problem of manipulation, we show an interesting contrast to the results in (VG17)

which states that the optimal manipulation can be obtained ‘inconspicuously’ (by mak-

ing minimal changes to the original preference order), by showing limitations of manip-

ulation when preferences are limited to restricted domains. We follow this with a dis-

cussion on preference pro�les with unique stable marriages. We show that 1D-Euclidean

preferences admit unique stable matching. We complement this by showing an expo-

nential number of stable matchings for “almost” restricted domains.

Next, we de�ne a problem of �nding a stable matching for a ‘critical set’. Given a critical

set of agents, problem asks for a stable matching which matches all agents from this set.

We provide further motivation in Section 5.1 and details on results in Section 5.8. We

conclude the Chapter 5 with an elegant algorithm for �nding (n,0)-supermatch which is

a special case of (a,b)-supermatch de�ned in (GSOS17).

In Chapter 6, we take a detour to consider the problems related to the extension of stable

matching instances with ties and incomplete preferences. We focus on extensions which

admits a unique stable matching. For the general case, we show hardness for �nding the

existence of such extension. For a special case when the agents are matched to their

top preference in the extended pro�le, we show an e�cient algorithm to solve such

instance, and we conclude the Chapter with showing hardness for �nding extension to

1D-Euclidean domain.

Acknowledgements. �e work from both Chapter 5 and Chapter 6 is done in collaboration

with Neeldhara Misra.

1.3.3 Part III - Fair Division

In this work, we focus on connected fair division of indivisible goods. We consider the

case when goods are arranged on the path for the case of binary valuations. Notice that

in this case, a connected allocation essentially means an interval of goods on the path.

Our results can be primarily classi�ed in two classes based on two fairness notions –

Envyfreeness and Equitability.

In Chapter 7, we study the notion of envyfreeness. Along with the general binary valu-

ations on the path, we consider restricted valuation functions as a special case. For the

e�ciency, we study Pareto Optimality and Non-wastefulnsess (each agent should only be

allocated the goods she approves) along with envyfreeness. We start with the investiga-

tion on the existence of these allocations and later move to the computation. We note

that the existence and computation of EF1+PO allocations for general allocation have

been resolved in (IP19). We resolve the question of existence for all the cases and �nd the

complexity of almost all the cases except when valuations form a contiguous interval.

Next, we consider the notion of Equitability for our work in Chapter 8. We consider

the same set of restricted domains and e�ciency notions, as described above. Unlike

envyfreeness, to the best of our knowledge, we are �rst to consider equitability for con-

nected allocations of discrete goods on a path. We resolve all the questions regarding

the existence of such allocations. On the computation part, we provide a general poly-

time algorithm computing EQ1+complete allocations for any se�ing. We also provide

several elegant e�cient algorithms for �nding EQ1 allocations for restricted domains.

8
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Except for the case of arbitrary interval valuations, we provide hardness results for all

the remaining cases.

Acknowledgements. Both Chapter 7 and Chapter 8 are based on joint work with Rohit

Vaish, Neeldhara Misra and P. R. Vaidyanathan.
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Chapter 2

Preliminaries

In this chapter, we provide the de�nitions to the concepts common across all the three

following parts of the thesis. We will de�ne the types of preferences followed by the

domain restriction we consider in our study. We end the chapter with the terminology

in classical and parameterized complexity theory.

For a given natural number k ∈ N, we denote the set {1, 2, . . . , k} by [k]. A generic

instance with preferences consists of a two-tuple 〈V ,P〉 (the tuple might contain extra

information according to the problem at hand). Here, V = {1, 2, . . . ,n} is the set of

participating agents. A binary preference relation� indicates the preferential distinction

between two agents. �e relation� is asymmetric and transitive. For agentsa,b, i; a �i
b denotes that agent i strictly prefers agent a over b. Similarly, the binary transitive

relation ∼ indicates the indi�erence relation i.e., a ∼i b denotes indi�erence between

agents a and b for agent i. �e preferences are said to be complete-strict orderings if

each agent provides a strict ranking (i.e. preferences without indi�erence) over all other

agents. We de�ne P to be the preference pro�le, which is a collection of preferences of

all participating agents in the instance.

Another type of preferences we consider in this work are approval ballots. In this case,

each agent v ∈ V , approves a subset Av ⊆ V \ v and dis-approves all other agents

in the instance. In general, these preferences are represented as the binary vectors of

appropriate dimension (depending upon the number of agents in the instance).

11



12 Chapter 2. Preliminaries

2.1 Restricted Domain under consideration

In this section, we provide the de�nitions of the restricted domains we consider. We

refer the reader to Section 1.2. Let E := (C,V) be an election with set of candidates C

and set of voters V .

De�nition 1. Single-Peaked Preferences: A preference order � over V is called single-

peaked with respect to order � ′ of V if, for every pair of agents x,y ∈ V , we have x � y
whenever we have either c � ′ x � ′ y or y � ′ x � ′ c, where c ∈ V is an agent at the

�rst position of �. A pro�le P is called single-peaked with respect to � ′ if ∀i, �i∈ P is

single-peaked with respect to � ′.

a1 : 1 � 2 � 3 � 4
a2 : 2 � 3 � 4 � 1
a3 : 3 � 2 � 1 � 4
a4 : 3 � 4 � 2 � 1

1 2 3 4

Figure 2.1: Single-Peaked Domain

We generalize de�nition of a k-composite single-peaked pro�le, which is a natural gen-

eralization of the single-peaked notion above.

De�nition 2. k-composite single-peaked: A pro�le is k-composite single-peaked if there

is an ordering of the candidates σ and a partition of the candidate set into at most k parts

such that each part induces a single-peaked pro�le on σ restricted to that part.

We note, importantly, that this is di�erent from the more well-studied notion of multi-

peaked pro�les, where we have the additional constraint that the k parts have to addi-

tionally form intervals on a �xed global ordering.

A similar notion called k-additional axis where the votes(rather than the candidates) are

divided into k buckets and each bucket is single-peaked, has been studied in (ELP13).

De�nition 3. Single-Crossing Preferences: A pro�le P of ` preferences over set of agents V

is called a single-crossing pro�le if there exists a permutation σ of [`] such that, for every

pair of distinct agents x,y ∈ V , whenever we have x �σ(i) y and x �σ(j) y for two

integers i, j with 1 6 σ(i) 6 σ(j) 6 n, we have x �σ(k) y for every σ(i) 6 k 6 σ(j).

a1 : 1 � 2 � 3 � 4
a2 : 2 � 3 � 4 � 1
a3 : 3 � 2 � 4 � 1
a4 : 3 � 4 � 2 � 1

12
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a1 : 1 2 3 4

a2 : 2 3 4 1

a3 : 3 2 4 1

a4 : 3 4 2 1

Figure 2.2: Single-Crossing Pro�le (Any pair of colors crosses at most once)

We now de�ne the notion of single-crossing domains to r-single-crossing domains in

the following natural way (c.f. (MSV17)): for every pair of candidates (a,b), instead of

demanding one index where the preferences “switch” from one way to the other, we

allow for r such switches.

De�nition 4. r-single-crossing: a pro�le is r-single crossing if for every pair of candi-

dates a and b, there exist r indices j0[(a,b)], j1[(a,b)], . . . jr[(a,b)], jr+1[(a,b)] with

j0[(a,b)] = 1 and jr+1[(a,b)] = n + 1, such that for all 1 6 i 6 r + 1, all voters

vj with ji[(a,b)] 6 j < ji+1[(a,b)] are unanimous in their preferences over a and b.

De�nition 5. 1D Euclidean Preferences: A pro�le P is said to be 1-D Euclidean, if there

exist a mapping X : V → R which maps every agent on a real line such that for any agent

i, x �i y if and only if |d(i, x)| < |d(i,y)|.

Hence, an agent prefers the agent closer to it to the farther agent.

De�nition 6. Narcissistic pro�le: We say that the given pro�le is narcissistic if every agent

appears in the top position (i.e. most preferred) in the preference order of at least one agent.

Apart from these we consider some special preference classes for dichotomous prefer-

ences. �ese classes are inspired from the work of Elkind et al. (EL15). Some of these are

variants of single-peaked and single-crossing properties for dichotomous preferences.

Primarily, we use these classes in our work in Connected Fair Division part III, hence,

we defer the de�nitions to Section 7.2.

2.2 Classical Complexity and reductions

�e complexity of a computational problem measured by the resources required to solve

the problem. According to these resources, there are several classes of computational

complexity. In the context of this thesis, we consider time as the primary resource for

our classi�cation of problems (the other resource of prime interest is the space required

to solve the problem). For the detailed introduction to the theory of computation com-

plexity, we refer the reader to (Sip) and (AB09).

�e computational problems are o�en de�ned as a set of instances (strings) L ⊆ Σ∗

with certain properties, and the problems are posed as a decision version. �e solution

13



14 Chapter 2. Preliminaries

to such a decision problem is YES if the given instance belongs to the set and is NO if

the instance does not belong to the set. A time complexity for the problem is de�ned as

the number of computational steps required to solve the problem in the worst case as a

function of the size of the input instance.

Two well-studied complexity classes (with respect to time complexity) are P and NP. A

problem is said to be in P if there exists an algorithm which decides the problem in poly-

nomial time. Such problems are said to be e�ciently solvable. NP is a class of problems

which admits e�ciently veri�able certi�cates in the positive case. In other words, there

exist a polynomially veri�able “witness” for the YES instances of the problem.

De�nition 7. A decision problem L is said to be NP-complete if:

1. L ∈ NP

2. L is NP-hard

�e �rst condition implies the existence of e�cient certi�cate for L. �e second condi-

tion implies that L is at least as hard as any other problem in NP i.e. there exist a many

one reduction from any other L ′ ∈ NP to L. We now give the de�nition of the many-one

reductions as suggested by Karp (Kar72).

De�nition 8. Given two L and L ′, if there exist a polynomial function g, such that

x ∈ L ⇐⇒ g(x) ∈ L ′

then we say that there exist a polynomial time many-one reduction from L to L ′, and we

denote it as L 6mp L
′
.

To show a particular problem to be NP-complete, one has to show a an e�cient certi�-

cate for the problem, and show a polynomial time reduction from known NP-complete

problem to the problem at hand (this will establish condition 2 for NP-completeness).

An e�cient (polynomial time) algorithm for NP-complete problem seems unlikely since

by the de�nition that would imply e�cient algorithm to any other problem in NP.

�roughout this thesis we will assume that P 6= NP.

2.3 Parameterized Complexity

A parameterized problem is denoted by a pair (Q,k) ⊆ Σ∗ ×N. �e �rst componentQ

is a classical language, and the number k is called the parameter.

A central concept in parameterized complexity is the notion of �xed parameter tractabil-

ity (FPT). We call a problem (FPT) if there exists an algorithm that decides it in

timeO(f(k)nO(1)) on instances of sizen. Notice that the �rst component in the running

time can be any function of only the parameter under consideration.

On the other hand, a problem is said to belong to the class XP if there exists an algorithm

that decides it in time nO(f(k))
on instances of size n.

14
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For further �ne grained analysis, the problems outside FPT are divided into the com-

plexity classes known as W-hierarchy. �e relation between FPT, W-hierarchy, and XP
is as follows:

FPT ⊆W[1] ⊆W[2] ⊆ · · · ⊆ [W-SAT] ⊆W[P] ⊆ XP

We refer the reader to (CFK
+

15) for a comprehensive introduction to parameterized

algorithms.
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Part I

Voting
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Chapter 3

Winner determination for

Chamberlin-Courant on restricted

domains

3.1 Introduction
1

We refer the reader to subsection 1.1.1 for a gentle introduction to voting. A tradi-

tional election se�ing consists of voters expressing their preferences over alternatives,

where preferences can be modelled in several ways (approval ballots, ternary ballots,

top-truncated lists, total orders, and so forth). Usually, given such a scenario, we would

like to identify a winning alternative. In many applications, however, we need to iden-

tify not one, but a �xed set of alternatives that best represent the interests of the voters.

Such a problem arises in a variety of scenarios like commi�ee selection, parliamentary

elections, movie recommendation systems, and so forth.

�ere are several ways of measuring how well a commi�ee fares against a set of votes.

When votes are approval ballots, for instance, the maximum or the sum of Hamming

distances is o�en used as a measure of quality. We consider the se�ing of votes given

as complete rankings, and focus on the well-studied Chamberlin-Courant rule (CC83),

which achieves proportional representation. �e way this voting rule works is the fol-

lowing. We begin by �xing a notion of a “dissatisfaction function” α : N → N, which

simply speci�es, by α(i), how unhappy a voter is when she is represented by a candi-

date who is ranked at the ith position on her list. Given a commi�ee with k candidates,

a voter is represented by the candidate that she ranks the highest among candidates

from X. If φ(v) denotes the candidate that is representing voter v, the optimal commit-

tee under the Chamberlin-Courant voting rule seeks to minimize either the sum or the

maximum value of α(posv(φ(v))), taken over all voters v (where posv(c) denotes the

ranking of the candidate c in the vote v).

�e Chamberlin-Courant rule (and the closely related Monroe voting rule, which we

do not consider in the present work) has several desirable properties. It has been ar-

gued (SYFE15) that rules that achieve proportional representation are particularly well-

suited for electing commi�ees that need to make unanimous decisions, and in particular,

1
Some portions of this chapter are taken verbatim from (MSV17)
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20 Chapter 3. Winner determination for Chamberlin-Courant on restricted domains

that takes minority candidates into account. However, it turns out that �nding an opti-

mal commi�ee under this rule is NP-hard (PRZ08), (LB11), and it is therefore unlikely

to admit an e�cient algorithm.

On the other hand, there have been promising developments showing that the opti-

mal Chamberlin-Courant commi�ees can be computed e�ciently on structured pro�les

which are commonly encountered in practical scenarios. Two such restrictions that have

been particularly successful are the single-peaked (BSU13) and single-crossing domains

(SYFE15). In a parallel development, (EL14) showed various e�cient algorithms for de-

tecting pro�les that are close to being structured (in this case, the notion of closeness is

that these pro�les exhibit the structure of the domain on all but a small number of can-

didates or voters). More generally, the notion of closeness to a domain is well-studied

and has been de�ned in various ways (FHH14).

We combine these scenarios to address the following question: how well do the e�cient

algorithms on the restricted domains extend to pro�les that are of the la�er type, that

is, they exhibit the properties of the domain on all but a small number of candidates or

voters? We now turn to our �ndings in the context of this question and closely related

issues.

Structured pro�les

(polynomially solvable)

General pro�les

(NP-hard)

Nearly structured pro�le

P NP-hard?

Figure 3.1: Chamberlin Courant Winner Determination

3.1.1 Our Contributions and Organisation of the Chapter

A natural framework for addressing the problem of how well algorithms on structured

domains scale up to nearly-structured ones is parameterized complexity (CFK
+

15). To

begin with, we show e�cient algorithms on pro�les that k candidates or k voters away

from the single-peaked and single-crossing domains. In particular, for pro�les that are

k candidates away from being single-peaked or single-crossing, we show algorithms

whose running time is FPT in k. For pro�les that are k voters away from being single-

peaked or single-crossing, our algorithms are XP in k. �ese algorithms are obtained by

a careful extension of the known algorithms (BSU13; SYFE15) on the structured pro�les.

�is provides a natural application for the work by Elkind and Lackner in (EL14), who

study the problem of �nding deletion sets to single-peaked and single-crossing pro�les.

In contrast to these results, for a di�erent, but equally natural way of generalizing these

domain, we show severe intractability results. In particular, we show that the problem is

NP-hard on pro�les that can be “decomposed” into a constant number of single-peaked

pro�les. Also, if the number of crossings per pair of candidates in a pro�le is permi�ed

to be at most three (instead of one), the problem continues to be NP-hard. �is stands
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Chapter 3. Winner determination for Chamberlin-Courant on restricted domains 21

in contrast with other a�empts at generalizing these domains (such as single-peaked or

single-crossing width (SYFE15; CGS12)), as it rules out the possibility of �xed-parameter

(or even XP) algorithms when parameterized by the number of peaks, or the maxi-

mum number of crossings per candidate pair. We show the hardness for both Harsanyi

((Har75) `1) and Rawlsian (`∞) misrepresentation aggregation functions.

SP CC SP MM
2

CC SC CC SC MM CC

Struct
3 O(nm2) O(nm) O(n2mk) O(n2mk)

VDel 2RkO(nm2) 2RkO(nm) 2RkO(n2mk) 2RkO(n2mk)

CDel 2kO(nm2) 2kO(nm) 2kO(n2mk) 2kO(n2mk)

Table 3.1: Summary of algorithms for CC-Winner Determination

Related Work. Our work builds primarily on two lines of work from before. We

appeal to the known algorithms that determine the optimal Chamberlin-Courant com-

mi�ees on single-peaked pro�les (BSU13) and single-crossing pro�les (SYFE15). �ese

results have been extended to other multiwinner voting rules, which we do not con-

sider in the present work. Also, e�cient algorithms have been shown on more general

preference restrictions such as single-peakedness on trees, or single-crossing width.

3.2 Preliminaries

In this section, we introduce some of the notation and de�nitions that we will use. For

a more detailed introduction to notions relating to restricted domains and voting rules,

we refer the reader to the appropriate chapters in (BCE
+

16), and for a comprehensive

introduction to parameterized algorithms, we refer the reader to (CFK
+

15).

For a positive integer `, we denote the set {1, . . . , `} by [`]. We �rst de�ne some general

notions relating to voting rules. Let V = {vi : i ∈ [n]} be a set of n voters and C =
{cj : j ∈ [m]} be a set ofm candidates. If not mentioned otherwise, we denote the set of

candidates, the set of voters, the number of candidates, and the number of voters by C,

V ,m, and n respectively.

Every voter vi has a preference�i which is a complete order over the set C of candidates.

We say voter vi prefers a candidate x ∈ C over another candidate y ∈ C if x �i y. We

denote the set of all preferences over C by L(C). �e n-tuple (�i)i∈[n] ∈ L(C)n of the

preferences of all the voters is called a pro�le. Note that a pro�le, in general, is a multiset

of linear orders. For a subset M ⊆ [n], we call (�i)i∈M a sub-pro�le of (�i)i∈[n]. For

a subset of candidates D ⊆ C, we use P|D to denote the projection of the pro�le on the

candidates in D alone. A domain is a set of pro�les.

�e rest of this section is organized as follows. We de�ne the Chamberlin-Courant voting

rule. We then de�ne the problems that we will study subsequently.
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22 Chapter 3. Winner determination for Chamberlin-Courant on restricted domains

Chamberlin-Courant. �e Chamberlin–Courant voting rule is based on the notion

of a dissatisfaction function or a misrepresentation function. �is function speci�es, for

each i ∈ [m], a voter’s dissatisfaction from being represented by candidate she ranks in

position i.

De�nition 9. For an m-candidate election, a dissatisfaction function is given by a non-

decreasing function α : [m]→ N with α(1) = 0.

A popular dissatisfaction function is Borda, given by αmB (i) = αB(i) = i − 1. We

now turn to the notion of an assignment function. Let k be a positive integer. A k-

CC-assignment function for an election E = (C,V) is a mapping Φ : V → C such that

‖Φ(V)‖ 6 k. For a given assignment functionΦ, we say that voter v ∈ V is represented

by candidate Φ(v) in the chosen commi�ee. �ere are several ways to measure the

quality of an assignment functionΦ with respect to a dissatisfaction function α; we use

the following two:

1. `1(Φ) =
∑
i=1,...,n α(posvi(Φ(vi))), and

2. `∞(Φ) = maxi=1,...,n α(posvi(Φ(vi))).

We are now ready to de�ne the Chamberlin-Courant voting rule, which is the primary

focus of this paper.

De�nition 10. For every family of dissatisfaction functions α = (αm)∞m=1, and every

` ∈ {`1, `∞}, the α-`-CC voting rule is a mapping that takes an election E = (C,V) and

a positive integer k with k 6 ‖C‖ as its input, and returns a k-CC-assignment function

Φ for E that minimizes `(Φ) (if there are several optimal assignments, the rule is free to

return any of them).

Chamberlin and Courant (CC83) originally proposed the utilitarian variants of their rules

with a focus on the Borda dissatisfaction function. �e egalitarian variant was consid-

ered by, for instance, Betzler et al. (BSU13).

We refer the reader to Section 2.1 and Section 2.3 to recall the de�nitions of single-

peaked, single-crossing domains and their generalization (composite single peaked and

r-crossing pro�les), and concepts in parameterized complexity respectively.

Nearly Structured Domains. Let D = {SP, SC} be a �xed domain, where SP refers to

single-peaked domains, and SC denotes single-crossing domains. We say that a pro�le

P over candidates C has a candidate (voter) modulator of size k to D if there exists a

subset of at most k candidates (voters) such that the restriction of the pro�le to all but

the chosen candidates (voters) belongs to the domain D. Whenever a pro�le admits a k-

sized candidate modulator to D, we say that it is k-close to D via candidates. �e notion

of being k-close to D via voters is analogously de�ned.

�e work of (ELP13), (BCW16) shows that it is polynomial-time to �nd the smallest can-

didate (voter) modulator to the domain of single-peaked (single-crossing) pro�les respec-

tively. �e work of (EL14) addressed the NP-hard variants and showed 2-approximation

and 6-approximation algorithms for �nding the smallest voter and candidate modulator
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Chapter 3. Winner determination for Chamberlin-Courant on restricted domains 23

to the domains of single-peaked and single-crossing pro�les, respectively. �erefore, in

all our problem formulations, we assume that we are given an instance of an election

with a modulator to either domain as a part of the input — since it is tractable to �nd

such modulators in all cases.

Problem De�nition. We now de�ne the main problem that we address in this work,

which we denote by `,D-CC Via χ, where ` is an aggregation function, D is a domain

and χ is either candidates or voters, referring to the type of the modulator we are given

as a part of the input.

`,D-CC Via χ

Input: An election E = (C,V), a commi�ee size b, a target misrepresentation

score R, a misrepresentation function α, and a k-sized χ modulator X to the

domain D.

Parameter: k

�estion: Is there a commi�ee of size b whose `-misrepresentation score un-

der the function α is at most R?

3.3 Tractability on Nearly Structured Preferences

�e goal of this section is to establish the following theorem.

�eorem 1. For all ` ∈ {`1, `∞} and for all D ∈ {SP,SC}, the (`,D)-CC Via Candidates

problem is in FPT and the (`,D)-CC Via Voters problem is in XP.

3.3.1 Overall Approach

We describe now informally our overall approach for solving the (`,D)-CC Via χ prob-

lem. First, we brute force through all possible “behaviors” of the solution on the modula-

tor. Next, instead of solving the “vanilla” Chamberlin-Courant optimization problem on

the part of the pro�le that is structured (according to the domain D), we adapt our solu-

tion to account for the guessed behavior on the modulator. For ease of presentation, we

de�ne an intermediate auxiliary problem, which is an extension version of the original

problem, described below.

3.3.2 Problem Setup

In the extension problem corresponding to (`,D), we are given, as usual, an election E =
(C,V), a commi�ee size b, a target misrepresentation score R and a misrepresentation

function α. In addition, we are also given a subset of candidates X with size at most k

and a partition of X into G and B. �e promise is that the election induced by the votes

V when restricted to the candidates C \X is structured according to the domain D. �e

goal is to �nd an optimal Chamberlin-Courant commi�ee among the ones that contain
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24 Chapter 3. Winner determination for Chamberlin-Courant on restricted domains

all candidates in G and contain none of the candidates in B. �e formal de�nition is as

follows. In the following, we say that a commi�ee respects a partition (D ] G ] B) of

the candidate set C if it contains all of G and none of B.

(`,D)-CC Extension

Input: An election E = (C,V), a partition of the candidates into (D ] G ]
B), a commi�ee size b, a target misrepresentation score R, a misrepresentation

function α; such that the election induced by (D,V) belongs to the domain D.

�estion: Is there a commi�ee of size b that respects (D]G] B) and whose

`-misrepresentation score under the function α is at most R?

Before describing how to solve the (`,D)-CC Extension problem, we �rst establish that

it is indeed useful for solving the (`,D)-CC Via χ problem. Let D be a �xed domain from

{Single-Peaked, Single-Crossing}. First, consider the (`,D)-CC Via χ problem where we

are given a k-sized candidate modulator as input, or that χ is �xed to be candidates. Let

(E = (C,V),b,R,α,X), denoted by I, be an instance of (`,D)-CC Via χ. Recall that

X is a candidate modulator to the domain D, in other words, the election induced by

(C \ X,V) has the structure of D. Our algorithm proceeds as follows. For a subset of

candidates Y ⊆ X, let:

JY := (E = (C,V); (C \ X, Y,X \ Y),b,R,α).

If JY is a Yes-instance of (`,D)-CC Extension for some Y ⊆ X, then our algorithm

returns Yes and aborts. If, on the other hand, for every subset Y ⊆ X of candidates

it turns out that JY is a No-instance of (`,D)-CC Extension, then we return No. It

is easy to see that whenever the algorithm returns Yes, assuming the correctness of

the (`,D)-CC Extension procedure used, there exists a commi�ee that has the desired

misrepresentation score.

To argue the correctness of the algorithm, we show that if I is a Yes-instance then the

algorithm does indeed produce a commi�ee that can achieve the desired misrepresen-

tation score. To this end, let C?
be a commi�ee whose `-misrepresentation score under

the function α is at most R. Let Y?
denote C? ∩ X. �en note that C?

is a commi�ee

that respects the partition D := C \ X, G := Y?
, and B := X \ Y?

. Further, note that

since X is a candidate modulator to D, the election induced by (D,V) belongs to the do-

main D. Clearly, the instance (E = (C,V); (D,G,B),b,R,α) is a well-formed input to

the (`,D)-CC Extension problem, and C?
is a valid solution to it. Assuming again the

correctness of the (`,D)-CC Extension procedure used, we are done. Observe that the

running time of our algorithm here is 2kq(n,m), where q(n,m) is the time required

by the (`,D)-CC Extension procedure on an instance of size n+m.

We now turn to the (`,D)-CC Via χ problem where we are given a k-sized voter mod-

ulator as input, or that χ is �xed to be voters. Here a direct brute-force approach as in

the previous case does not suggest itself, because of which we su�er a greater overhead

in our running time. For simplicity, we �rst describe our algorithm for the egalitarian

variant, that is, we �x ` = `∞. We later describe the changes we need to make when we

deal with the utilitarian variant.
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Let (E = (C,V),b,R,α,X), denoted by I, be an instance of (`,D)-CC Via χ. Recall that

X is a voter modulator to the domainD, in other words, the election induced by (C,V\X)
has the structure of D. For every voter, we guess the candidate who represents that voter

in an arbitrary but �xed, and valid, Chamberlin-Courant commi�ee. For such a guess

µ, let Yµ denote the set of at most k candidates who have been chosen to represent the

voters in the modulator. More speci�cally, a voter v ∈ X, let µ(v) denote the candidate

that we have guessed as the representative for the voter v, and let d(v) denote the set of

candidates ranked higher than µ(v) by the voter v. Note that Yµ is simply ∪v∈Xµ(v).

We �rst run the following easy sanity check: if, for u, v ∈ X, u 6= v, we have that µ(v) ∈
d(u), then we reject the guess Y. Otherwise, de�ne Bµ := ∪v∈Xd(v) andGµ := Yµ, and

letDµ := C \ (G∪B). Observe that Bµ andGµ are disjoint because of the sanity check.

Further, let:

Jµ := (E = (C,V \ X); (Dµ,Gµ,Bµ),b,R,α).

It is easily checked that Jµ is a well-formed instance for (`,D)-CC Extension. As before,

we return Yes if and only if there exists a guess µ for which Jµ is a Yes instance of (`,D)-
CC Extension. To see the correctness of this approach, let C?

be a commi�ee whose

`-misrepresentation score under the function α is at most R. For each voter v ∈ X, let

µ?(v) denote the top-ranking candidate from C?
in the vote of v. Let Y?

be given by

∪v∈Xµ?(v), and let B?
be the set of all candidates ranked higher than µ?(v) in the votes

v from X. Observe that C?
does not contain any candidates from B?

by the de�nition of

µ?
.

Now, as before, de�ne: G := Y?
, B := B?

, and D := C \ (G ∪ B). Clearly, the instance

(E = (C,V \ X); (D,G,B),k,R,α) is a well-formed input to the (`,D)-CC Exten-

sion problem, and C?
is a valid solution to it. Assuming again the correctness of the

(`,D)-CC Extension procedure used, we are done. Observe that the running time of

our algorithm here is nkq(n,m), where q(n,m) is the time required by the (`,D)-
CC Extension procedure on an instance of size n+m. For the utilitarian version of the

problem (where ` = `1), the procedure is identical, except that we use R′ instead of R

in the de�nition Jµ, where R′ is R− RX,µ, and RX,µ is the sum of the misrepresentation

score of the candidate µ(v) with respect to the voter v, and the sum is over v ∈ X. It is

easily veri�ed that the other details work out in the same fashion.

�e rest of this section is section is devoted to showing that the (`,D)-CC Extension

problem can be solved in polynomial time by adapting suitably the known algorithms

for the Chamberlin-Courant problem on the relevant domain D. �ese adaptations are

sometimes subtle and in particular for the single-peaked case, we have to treat the util-

itarian and the egalitarian variants separately (corresponding to ` = `1 and ` = `∞
respectively).

3.3.3 (`,D)-CC Extension for the Single-Crossing Domain

In this section we demonstrate a polynomial time algorithm for the (`,D)-CC Exten-

sion problem for the case when D = SC. �is builds closely on the algorithm shown

by (SYFE15). First, we show a structural property which is an easy adaptation of Lemma
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26 Chapter 3. Winner determination for Chamberlin-Courant on restricted domains

5 in (SYFE15). �e statement corresponding to single-crossing pro�les states that there

is an optimal commi�ee for which an optimal assignment assigns candidates in contigu-

ous blocks over the single-crossing order. For the (`,D)-CC Extension problem, this

continues to be the case for candidates c from D except that some voters in the contigu-

ous block may be assigned to candidates in G instead of being assigned to c. We now

state this formally. In the statement below, an optimal b-CC assignment is considered

only among commi�ees that respect the semantics of (D,G,B) in the given instance I

of (`,D)-CC Extension.

Lemma 1. Let I = (E = (C,V); (D,G,B),b,R,α) be an instance of (`,SC)-CC Ex-

tension. Suppose V = (v1, . . . , vn) is the single-crossing order of the votes and C =
(c1, . . . , cm) is an ordering of the candidates according to vi. �en for every b ∈ [m],
every dissatisfaction function α for m candidates, and for every ` ∈ {`1, `∞}, there is an

optimal b-CC assignmentΦ for E under α− `−CC such that for each candidate ci ∈ D,

if φ−1(ci) 6= ∅, then there are two integers ei and fi, with ei < fi, such that for every vote

v in the set of voters V ′ = {vei , vei+1, . . . , vfi}, φ(v) ∈ {ci} ∪G. Moreover, for each i < j

such that Φ−1(ci) 6= ∅ andΦ−1(cj) 6= ∅, it holds that ei < fi.

We next provide the intuition for the proof of the Lemma above, and refer the reader to

the proof of (SYFE15, Lemma 5) as the proof is along similar lines. Consider the case of

pristine SC election instance (which is election E ′ = (D,V) in our case). Observe that if

there are voters u, v,w appearing in that order in the single-crossing ordering, and for

two candidates c1, c2 ∈ D, ifu andwwere to be assigned to c1 and vwere to be assigned

to c2, then this would imply that c1 �u c2 and c1 �w c2, while c2 �v c1, violating the

single-crossing structure of the election restricted to D. Hence, for SC elections the

‘contiguous block’ property holds for the assignment function. In the above instance

I since the only other assignments allowed are to candidates in G (as these candidates

already belong to the commi�ee), the claim follows.

We now have the following natural consequence.

Lemma 2. (`,SC)-CC Extension admits a polynomial time algorithm, both for when ` =
`1 and when ` = `∞.

Proof. (Sketch) Lemma 1 suggests a natural dynamic programming over the SC ordering

of voters and ordering of candidates according to v1 (the �rst voter in single-crossing

ordering). For the Single-Crossing pro�les our algorithm is essentially a modi�ed ver-

sion of the dynamic programming routine which was originally developed in (SYFE15).

Here, for i ∈ {0}∪ [n], j ∈ [m− |G|− |B|] and t ∈ b− |G|, we de�neA[i, j, t] as the best

possible misrepresentation score that can be achieved by a commi�ee of size t+ |G| that

respects the semantics of (G,B,D) formed using a subset of �rst j candidates consider-

ing the �rst i votes, where the candidates of D are ordered according to the ranking of

the �rst voter in the single-crossing ordering and the voters are ordered according to the

single-crossing ordering. �e recurrence for single-crossing orders works by “guessing”

the �rst voter v to be represented by the candidate cj, and the optimal representation

of the preceding voters is found recursively. In our se�ing, this approach continues to

work, except that instead of simply adding up the misrepresentation score of cj for all

voters in the interval starting from v and ending at vi, we check (for every vote in this

interval) if there is a candidate fromG who is ranked above cj, and appropriately adjust
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the calculation of the misrepresentation score for such voters. �e time complexity of

above algorithm turns out to be O(mn2k) (as calculating the misrepresentation score

for each voter can take O(n) time). For the detailed description and the correctness of

the approach we refer the reader to (SYFE15, �eorem 6).

3.3.4 (`,D)-CC Extension for the Single-Peaked Domain

For the single-peaked domain, as alluded to earlier, we need to consider the utilitarian

and egalitarian variants separately. We �rst consider ` = `1.

In the following discussion the terms �rst and last are with respect to the societal order,

which we denote by A. A candidate ci is said to be smaller than another candidate cj if

the candidate ci appears before cj in the societal order A, and a candidate is said to be

larger if it appears a�er the other candidate. Betzler et al. (BSU13) proposed separate

algorithms for the utilitarian and egalitarian variants. To solve (`,D)-CC Extension in

this se�ing, we extend the dynamic programming algorithm proposed by Betzler et al

for the utilitarian se�ing.

Lemma 3. (`1,SP)-CC Extension admits a polynomial time algorithm.

Proof. Recall that we are given an instance (E = (C,V); (G,B,D),b, r,R, `) of (`1,SP)-

CC Extension. If b = |G|, then there is nothing to do. If b > |G|, we assume without

loss of generality that there is at least one voter whose top candidate does not belong to

G, otherwise we may simply return Yes since the commi�ee G is already good enough

for any reasonable R4
. �e main semantics of the DP table employed previously is the

following. For i ∈ [m] and j ∈ 1, . . . , min(i,k), we de�ne z(i, j) to be the total mis-

representation for a set of j winners from {c1, . . . , ci} including ci. �e �nal answer is

given by mini∈{k,...,m} z(i,k).

Let d denote |D| and c1 � c2 � · · · � cd be the single-peaked order. As before, for

i ∈ [m] and j ∈ 1, . . . , min(i,k), we de�ne a modi�ed DP table as follows: let z(i, j) be

the total misrepresentation for a set of j winners from {c1, . . . , ci} including {ci} ∪ G.

Note that now the �nal answer is given by mini∈{b′,...,m} z(i,b
′), where b′ = |G| − b.

Observe that our solution respects the partition (G,B,D), since the semantics of z is

such that we pick all the candidates from G and do not include any candidate from B.

Towards describing the recurrence, we establish some notation. First, let g∗(v) denote

the highest-ranked candidate from G in the preference ordering of the voter v. Also,

de�ne:

g(p, i) :=
∑
v∈V

max{0,min{r(v, cp) − r(v, ci), r(v,g
∗(v)) − r(v, ci)}}

Intuitively, g(p, i) gives the potential gain of assigning candidate i to the voter v, as-

suming that the voter v was previously assigned to either the candidate cp or g∗(v).
Both g(i) and g(p, i) can be precomputed in time O(nm2) by performing one pass over

the votes and two passes over the candidates. We are now ready to describe the main

recurrence:

4
If R < α(1) ∗ n, for instance, then it is already impossible to achieve for any commi�ee.
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z[i, j] = min
j−16p6i−1

(
z [p, j− 1] − g(p, i)

)
,

with the base case:

z[i, 1] = min(r(v, ci), r(v,g
∗(v)).

Our argument for correctness only focuses on the part that needs to be adapted appro-

priately from the proof of (BSU13). Let C∗ be a commi�ee that witnesses the value of

z[i, j]. Let p be the largest index smaller than i (in the societal ordering) which is such

that cp ∈ C∗ and let g∗(v) be cq. If for a voter v it holds that r(v, ci) < r(v, cp) and

r(v, ci) < r(v, cq), then note that r(v, ci) < r(v, ct) for all t < p. �en the contribu-

tion of such a voter v to the misrepresentation of z[p, i − 1] is min(r(v, cp), r(v, cq)).
�is implies that the improvement in the misrepresentation score of this voter obtained

by reassigning the voter to the candidate ci is precisely given by g(p, i). For all other

voters, an assignment to ci does not improve their misrepresentation, so the algorithm

does nothing in these situations. �e correctness follows from the fact that the algorithm

tries all possible values of p, and the inductively assumed correctness of z[p, j− 1]. �e

time complexity of the core algorithm is O(m2), as both i and j can take at mostm val-

ues, coupled with the time to precompute d(p, i) and g(i), the total time complexity is

O(nm2).

We now turn to the egalitarian version of the rule, that is, ` = `∞. Here again, the

solution involves a straightforward adaptation of the approach of (BSU13) to account

for the constraints imposed by the semantics of (G,B,D) in the extension problem.

Lemma 4. (`∞,SP)-CC Extension admits a polynomial time algorithm.

Proof. (Sketch.) Let q be the largest integer for which α(q) 6 R. We �rst remove voters

who have a candidate fromG in their top q positions. Let V ′ denote the remaining set of

voters. For a voter v ∈ V ′, let Tq(v) denote the top q candidates in v’s ranking. Consider

the setM(v) := Tq(v)\B. Note that any valid commi�ee must contain a candidate from

M(v) for all v ∈ V ′. However, observe that the set M(v) ⊆ D, and therefore forms a

continuous interval on the societal ordering of candidates in D. �erefore our problem

reduces to �nding a clique cover of size at most b − |G| on the interval graph that is

naturally de�ned by the votes in V ′, which can be found in time O(nm).

3.4 Hardness for Generalized Restrictions on the Do-

main

3.4.1 3-Crossing Pro�les

To show the hardness of computing an optimal `∞-CC commi�ee on 3-crossing domains,

we reduce from the following variant of SAT, which is called LSAT. In an LSAT instance,

each clause has at most three literals, and further the literals of the formula can be sorted
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such that every clause corresponds to at most three consecutive literals in the sorted list,

and each clause shares at most one of its literals with another clause, in which case this

literal is extreme in both clauses. �e hardness of LSAT was shown in (ABC
+

15). For ease

of description, we will assume in the following reduction that every clause has exactly

three literals, although it is easy to see that the reduction can be extended to account

for smaller clauses as well. We refer the reader to section 2.1 to recall the de�nitions of

single-crossing domain and its generalization.

�eorem 2. Computing an optimal `∞-CC commi�ee with respect to the Borda misrepre-

sentation score is NP-hard even when the domain is three-crossing domain.

Proof. We will �rst describe our construction.

Construction. Let φ be an instance of LSAT with variables x1, . . . , xn and clauses

C1, . . .Cm. Without loss of generality, let us assume that the ordering of the clauses

in the LSAT instance is also given by C1, . . . ,Cm. Towards constructing the election

instance, we introduce one candidate for every literal in φ. Let pi and qi denote the

candidates corresponding to the variable xi. We also introduce (n + 1) dummy candi-

dates for each variable (which is a total ofn(n+1) dummy candidates). Let d[i, j] denote

the jth dummy candidate corresponding to the variable xi. We use C to denote the 2n
candidates corresponding to the literals, and D to denote the set of dummy candidates.

�e set of candidates for the constructed election instance is C ∪D.

Towards describing the votes, let us �x an ordering σ on the candidates as follows. �e

�rst 2n candidates are fromC arranged according to the LSAT ordering. �e lastn(n+1)
candidates are from D and are arranged in an arbitrary but �xed order. For a subset of

candidates X, the notation X refers to an ordering of X according to σ. We would now

like to setup the votes in such a way that a winning commi�ee corresponds to a valid

satisfying assignment. For 1 6 i 6 m − 1, let Gi denote literals in the set Ci \ Ci+1,

while we let Gm denote the literals in Cm. We are now ready to describe the votes. For

every 1 6 i 6 m, we introduce the vote vi, which has the literals of the clause Ci in the

top three positions, and the remaining candidates are ranked as follows:

vi := Gi � Gi+1 � · · · � Gm � Gi−1 � · · · � G1 � D

It is useful to note that the vote vi+1 can be thought of as a ranking obtained from

the vote vi by “pushing back” the tuple Gi to just behind Gm. �erefore, the ordering

among the Gi’s in vm is reverse of their ordering in v1. Observe that if a literal occurs

in Ci ∩ Ci+1, then it appears among the top three positions of both vi and vi+1.

We now turn to the second part of our pro�le, which consists of votes corresponding to

the variables. Here, for a subset of candidates X, we will use X to refer to an ordering

of X according to vm. Now, for every variable xi, we introduce the following (n + 1)
votes, with 1 6 j 6 (n+ 1).

vi,j := d[i, j] � pi � qi � (C \ {pi,qi}) � D \ {d[i, j]}

�is completes a description of the pro�le. We �x the Borda misrepresentation target

score at two and the commi�ee size is set to n.
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LSAT ordering: x1 , x2 , x3 , x1 , x4 , x2 , x4 , x3

( x1 ∧ x2 ∧ x3 )︸ ︷︷ ︸ ∨ ( x3 ∧ x1 ∧ x4 )︸ ︷︷ ︸ ∨ ( x2 ∧ x4 ∧ x3 )︸ ︷︷ ︸
C1 C2 C3

Candidate ordering: p1 , q2 , p3 , q1 , p4 , p2 , q4 , q3 , d[i, j]

( x1 ∧ x2 ∧ x3 )︸ ︷︷ ︸ ∨ ( x3 ∧ x1 ∧ x4 )︸ ︷︷ ︸ ∨ ( x2 ∧ x4 ∧ x3 )︸ ︷︷ ︸
G1 = p1 , q2 G2 = p3 , q1 , p4 G3 = p2 , q4 , q3

Figure 3.2: Example of construction of election instance from LSAT

Next we show the proof of equivalence.

Forward direction. We simply pick the literals corresponding to a satisfying assignment.

If a satisfying assignment does not set a variable, then we pick either pi or qi. �is

clearly satis�es every vote vi based on a clause (since otherwise, the assignment would

not be a satisfying one), and trivially satis�es the votes vi,j based on variables since we

pick exactly one of pi or qi for each 1 6 i 6 n.

Reverse direction. LetW be a commi�ee whose score is at most two. Observe thatWmust

choose at least one of pi or qi, for all 1 6 i 6 n. Indeed, if not, then such a commi�ee

is forced to pick every d[i, j], 1 6 j 6 n + 1, which is a violation of the commi�ee

size. Since the commi�ee has at most n candidates, it follows by a standard pigeon-hole

argument that |W∩{pi,qi}| 6 1 for all 1 6 i 6 n. �erefore, the commi�ee corresponds

naturally to an unambiguous assignment of the variables. It is easily checked that this

satis�es every clause, because an unsatis�ed clause c would correspond to a voter v(c)
whose Borda misrepresentation score would exceed two. �is completes the proof.

We now turn to the analysis of the constructed pro�le.

Analysis of the pro�le. Let us use W1 to denote the votes v1, v2, . . . , vm and W2 to denote

V \W1. Further, we use P to denote the candidates corresponding to the positive literals

ofφ, that is, P = {p1, . . . ,pn},Q to denote the candidates corresponding to the negative

literals, and D, as before, to denote the set of dummy candidates. Consider any pair of

candidates a,b ∈ C, such that a 6= b then, the following cases arise.

1. a ∈ P,b ∈ P. Let a = pi and let b = pj. Without loss of generality, let i < j. We

further consider the following two cases:

(a) Suppose pi appears before pj in σ, that is, pi � pj with respect to the LSAT

ordering σ. Let ti be the unique index such that pi ∈ Gti , and similarly let

tj be the unique index such that pj ∈ Gtj . Note that tj > ti if pi � pj with

respect to σ. If ti = tj then it is easy to verify that pi � pj in all the votes

v1, . . . , vm. On the other hand, suppose, tj > ti then observe that pi � pj
in all votes v1, v2, . . . , vti and pj � pi in all votes vti+1, . . . vm. �is follows

from the construction of the votes and the fact that the preferences between
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pi and pj have �ipped in vm relative to v1. Indeed, pi “crosses” pj when

vti+1 is obtained from vti by moving Gti+1
to before Gti . �erefore in all

situations, pi and pj cross at most once amongst the votes in W1.

To analyze the worst case crossings, suppose that pj � pi in vm. Note that

the ordering between pi and pj is the same as their ordering in vm in all the

following votes:

v1,1, . . . , v1,n+1, . . . , vi−1,1, . . . , vi−1,n+1.

Observe that pi � pj among all the votes from set {vi,1, . . . , vi,n+1}, since

pi is in the second position and qi is in the third position for these votes.

Further, in all the remaining votes, it is easily checked thatpj � pi. Indeed, in

the votes vj,1 . . . , vj,n+1, pj is already in the second position from the top, and

a dummy candidate occupies the top position, which agrees with pj � pi.
For any other vote a�er vi,n+1, the relative ordering between pi and pj is

identical to their ordering in vm. �is gives overall three crossings between

any pi,pj.

�e other situation, when pi � pj in vm admits a similar analysis, although

with two crossings in total instead of three. Here, however, the point of

crossing is at the chunk of votes corresponding to vj rather than vi from

set W2.

(b) For the case when qj � pi in σ, the similar analysis shows at most three

crossings.

2. a ∈ Q,b ∈ Q. �e proof is exactly similar to case 1.

3. a ∈ P,b ∈ Q with a = pi and b = qj.

(a) Suppose pi � qj with respect to σ. Let tp be the unique index such that

pi ∈ Gtp , and tq be the unique index such that qj ∈ Gtq . Note that tp > tq
for pi � qj. Following the argument in Case 1, where tj > ti implied pi and

pj crossing at most once in W1, we can say that pi and qj also cross at most

once in W1 since tp > tq. Now looking at W2 , for the case when i = j that

is a = pi and b = qi. Suppose that qj � pi in vm. Note that the ordering

between pi and qj is the same as their ordering in vm in all the following

votes:

v1,1, . . . , v1,n+1, . . . , vi−1,1, . . . , vi−1,n+1.

Observe that in pi � qj in all the votes vi,1, . . . , vi,n+1, since pi is at the

second position and a dummy candidate occupies the top position. Further,

in all the remaining votes, it is easily checked that qj � pi. Indeed, in the

votes vj,1, . . . , vj,n+1, qj is already in the third position from the top, pj is at

the second position from the top and a dummy candidate occupies the top

position, which agrees with qj � pi if i 6= j. For any other vote, the relative

ordering between piandqj is identical to their ordering in vm. Hence, pi and

qj cross twice in W2, with the crossing points on either side of the chunk

of votes corresponding to vi. In the case where i = j, i.e. a = pi and

b = qi, qi � pi in all the votes v1,1, . . . , vi−1,n+1 following the ordering in

vm. pi � qi in all the votes vi,1, . . . , vi,n+1 by virtue of the construction,
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and qi � pi in all the remaining votes following the ordering in vm. �is

shows that pi and qj cross exactly twice in W2, the crossing point being the

chunk of votes corresponding to vi. Hence, overall pi and qj have at most

three crossings.

For the other situation, when pi � qj in vm, pi and qj do not cross in W2.

In all the votes v1,1, . . . , vi−1,n+1; pi � qj following their ordering in vm.

In the votes vi,1, . . . , vi,n+1 also pi � qj since pi is at the second position

from top and a dummy candidate occupies the top position. In all the votes

vi+1,1, . . . , vj−1,n+1, again pi � qj following the ordering in vm. In the votes

vj,1, . . . , vj,n+1, qj � pi which constitutes one crossing at the start of this

chunk of votes, and another crossing at the end; as, in all the remaining votes

pi � qj following the ordering in vm. Hence, for the case when pi � qj in

vm there are only two crossings instead of three.

(b) Suppose qj � pi with respect to σ. For the case when i 6= j, with a similar

analysis it is possible to show that there are two and three crossings according

to their ordering in vm.

4. a ∈ D,b ∈ P. Let a = d[i, j] and let b = pl, here 1 6 i, l 6 n and 1 6 j 6 n+ 1.

We further consider following two cases:

(a) i 6= l: Notice that, pl � d[i, j] in σ. From the construction of votes in W1, for

all the votes v1, . . . , vm we have pl � d[i, j]. �is is because, all the dummy

candidates d[i, j] ′s appears in the �xed are at the end of voting preferences

for every voter in W1. Hence pl and d[i, j] does not cross each other in W1.

Note that, the ordering between pl and d[i, j] is same as their ordering in vm
in all the following votes:

v1,1, . . . , vi−1,n+1, vi,1, . . . ,Vi,j−1

For vote vi,j; d[i, j] � pl since d[i, j] is in the topmost position for that

vote. Further, in all the remaining votes, it can be easily checked that pl �
d[i, j] as a�er vote vi,j, d[i, j] moves all the way back to its position in vm.

Hence, we can see that, there are two crossings between d[i, j] and pl and

the crossings occur for the votes vi,j and vi,j+1. Hence, in total we have 2

crossings between d[i, j] and pl.

Now consider the other case when i = l, here, the crossings will occur at

same votes vi,j and vi,j+1. �e only di�erence is, for vote vi,j, both d[i, j] and

pl will be in top three positions of preference order, with d[i, j] being on the

topmost position. Again, the total number of crossings between d[i, j] and

pl remains two.

5. a ∈ D,b ∈ Q. Let a = d[i, j] and let b = ql, here 1 6 i, l 6 n and 1 6 j 6 n+1.

�e analysis for this part is exactly same as analysis done in part 4, with the only

di�erence that, we have replaced pl with ql, hence by relabelling pl with ql for

the above analysis, the analysis for this case can be obtained. Again, the total

number of crossings for this part is same as part 4 (i.e. the total number of crossings

between d[i, j] and ql is two).
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6. a ∈ D,b ∈ D. Let a = d[i, j] and b = d[α,β]. Without loss of generality, let

d[i, j] � d[α,β] in σ.

Note that, from our construction of candidate set we have n(n+ 1) total dummy

candidates and total of n(n + 1) votes in W2. Hence we have a unique dummy

candidate to appear at topmost position in preference order of each vote in W2.

Observe that for all the votes in W1 we do not have any crossing between d[i, j]
and d[α,β], since all the dummy candidates are in the �xed order for these votes

and this �xed order is identical to the ordering of dummy candidates in σ.

For the given case when d[i, j] � d[α,β] in σ, we will incur crossing between

these two candidates for votes vα,β and vα,β+1 in W2 (for v[α,β] we have d[α,β] �
d[i, j]). It is easy to see that, for all votes before and a�er vα,β we will haved[i, j] �
d[α,β]. Hence the total number of crossings between d[i, j] and d[α,β] is two.

Now consider the other situation when, d[α,β] � d[i, j] in σ. �e analysis for

this case is exactly same as the above analysis. �e only di�erence is that, for this

case we will incur crossing between d[α,β] and d[i, j] for votes vi,j and vi,j+1.

�erefore we have total two crossings for this case.

�is completes our discussion on crossings between any pair of candidates for the con-

structed pro�le. Note that there can be at most three crossings between any pair. Hence,

the pro�le in 3-crossing. �is completes the proof of �eorem 2.

We next move onto the utilitarian version of misrepresentation function (`1).

�eorem 3. Computing an optimal `1-CC commi�ee with respect to the Borda misrepre-

sentation score is NP-hard even when the domain is three-crossing domain.

Proof. To show the hardness for computing optimal commi�ee for `1-CC, we will again

show the reduction from LSAT instance.

Construction. Our construction is similar to that in �eorem 2. We construct the set

C candidates in the same way, and borrow D to denote the set of dummy candidates

(we will introduce these soon). We also borrow the notations σ and X with the same

semantics.

We �x the dissatisfaction limit to ∆ = 2 × number of voters in election instance =
2 × (m + n × (n + 1)). We would now like to setup the votes in such a way that a

winning commi�ee corresponds to a valid satisfying assignment. Let τ denote the set of

∆ unique dummy candidates. �e setD is the union over all such τ. For 1 6 i 6 m− 1,

let Gi denote literals in the set Ci \ Ci+1, while we let Gm denote the literals in Cm.

We are now ready to describe the votes. For every 1 6 i 6 m, we introduce the vote vi,

which has the literals of the clause Ci in the top three positions, followed by ∆ many

unique dummy candidates, and the remaining candidates are ranked as follows:

vi := Gi � τ � Gi+1 � · · · � Gm � Gi−1 � · · · � G1 � D

It is useful to note that the vote vi+1 can be thought of as a ranking obtained from

the vote vi by “pushing back” the tuple Gi to just behind Gm pull up Gi+1 to the top.
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�erefore, the ordering among the Gi’s in vm is reverse of their ordering in v1. Observe

that if a literal occurs inCi∩Ci+1, then it appears among the top three positions of both

vi and vi+1.

We now turn to the second part of our pro�le, which consists of votes corresponding to

the variables. Here, for a subset of candidates X, we will use X to refer to an ordering

of X according to vm. Now, for every variable xi, we introduce the following (n + 1)
votes, with 1 6 j 6 (n+ 1).

vi,j := d[i, j] � pi � qi � τ � (C \ {pi,qi}) � D \ {d[i, j] ∪ τ}

�is completes the description of our pro�le. We will now show the equivalence.

Forward direction. In the forward direction, we simply pick the commi�ee correspond-

ing to a satisfying assignment for LSAT. Clearly, the misrepresentation score for this

commi�ee is at most ∆ (since every voter has at least one of his top-three candidates in

the winning commi�ee). Hence, we showed that if there exists a satisfying assignment

for LSAT, then there exists a winning commi�ee of misrepresentation at most ∆.

Reverse direction. We need to show that if the optimal commi�ee has misrepresentation

score at most ∆, then we can �nd a satisfying assignment for LSAT instance (we

will show that this assignment corresponds to the optimal commi�ee). Let W be a

commi�ee whose score is at most ∆. Observe that W must choose at least one of

pi or qi, for all 1 6 i 6 n. Indeed, if not, then such a commi�ee is forced to pick

every dummy candidate for, 1 6 j 6 n + 1 (since any dummy candidate appears

exactly once in top ∆ positions) which is a violation of the commi�ee size. With the

constraint of commi�ee size n, it is easy to see that any commi�ee will correspond to

an unambiguous assignment of literals in LSAT instance. �is commi�ee satis�es all the

clauses, indeed if not, then the commi�ee will incur strictly more than ∆ dissatisfaction

from the corresponding vote itself.

Analysis for crossings. It is easy to see that since any dummy candidate comes in top ∆

positions only for one vote, all the dummy candidates have at most 2-crossings with any

other candidate. �e 2n candidates corresponding to the literals cross once in the clause

votes block and twice in the variable votes block as described in proof of �eorem 2.

�is gives a total of three crossings.

�is completes the proof �eorem 3.

3.4.2 3-composite single-peaked domains.

In this section, we show the hardness of computing an optimal `∞-CC commi�ee on

3-composite single-peaked domains with respect to the Borda misrepresentation score.

�e reduction is again from LSAT, and the construction is similar to the one used in

the proof of �eorem 2 in that we again have candidates corresponding to literals and

votes representing clauses. A commi�ee corresponds to a satisfying assignment pre-

cisely when its misrepresentation score is at most two. �e main di�erence from before

is that, in this case, we order the candidates on a societal axis (single-peaked axis) and

all the votes are single-peaked with respect to this axis.
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�eorem 4. Computing an optimal `∞-CC commi�ee with respect to the Borda misrep-

resentation score is NP-hard even when the domain is a three-composite single-peaked do-

main.

Proof. We refer the reader to section 2.1 to recall the de�nition of 3-composite single-

peaked domain.

Construction. Let φ be an instance of LSAT with variables x1, . . . , xn and clauses

C1, . . .Cm. Towards constructing the election instance, we introduce one candidate for

every literal in φ. Let p1 and qi denote the candidates corresponding to the variable

xi. We also introduce (n + 1) dummy candidates for each variable (which is a total of

n(n+1) dummy candidates). Let d[i, j] denote the jth dummy candidate corresponding

to the variable xi. We use C to denote the 2n candidates corresponding to the literals,

and D to denote the set of dummy candidates. P and Q denote the candidates corre-

sponding to the positive and the negated literals respectively.

Let us �x the ordering σ on the candidates as follows. �e �rst 2n candidates are from

C arranged according to the LSAT ordering. �e last n(n + 1) candidates are from D

and are arranged in an arbitrary but �xed order. Let σ ′ be the reverse of σ. For a subset

of candidates X, the notation X refers to an ordering of X according to σ. For a subset

of candidates X ⊂ C, who occupy adjacent positions in the LSAT ordering projected

over C, the notation

−−−→
C \ X refers to an ordering according to σ of the candidates from

C\Xwho appear a�er X in the LSAT ordering and similarly

←−−−
C \ X refers to an ordering

according to σ ′ of the candidates from C\Xwho appear before X in the LSAT ordering.

�is notation easily yields an ordering which is single-peaked — X �
−−−→
C \ X �

←−−−
C \ X. To

represent this succinctly, we introduce the notation

←−→
C \ X which refers to an ordering

according to σ of the candidates from C \ X who appear a�er X in the LSAT ordering

followed by an ordering according to σ ′ of the candidates from C\Xwho appear before

X in the LSAT ordering.

We would now like to setup the votes in such a way that a winning commi�ee cor-

responds to a valid satisfying assignment. We introduce one vote for every clause as

follows. Suppose the clause c consists of the literals (`1, `2, `3), and let the candidates

corresponding to these literals be t1, t2, t3 respectively. If `1 < `2 < `3 in the LSAT

ordering, then we introduce the following vote:

v(c) := t2 � t1 � t3 �
←−−−−−−−−−→
(C \ {t1, t2, t3}) � D

For every variable xi, we also introduce the following (n+1) votes, with 1 6 j 6 (n+1):

v(xi, j) := d[i, j] � pi � qi �
←−−−−→
(P \ {pi}) �

←−−−−−→
(Q \ {qi}) �

←−−−−−−→
D \ {d[i, j]}

�is completes a description of the pro�le. We �x the Borda misrepresentation target

score at two and the commi�ee size is set to n.

Analysis of the pro�le. We claim that the constructed pro�le is three-composite single-

peaked with respect to the partition (P,Q,D). First we look at v(c) – the votes based

on the clauses. v(c) when projected on D is trivially single-peaked; when projected on
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C it is single-peaked since three candidates (t1, t2, t3) appearing contiguously in σ are

placed at placed at the top with middle candidate (t2); and hence when projected on

P,Q ⊂ C will remain single-peaked . Now we look at v(xi, j) – the votes based on

variables. For each of these sets, we put exactly one candidate in top three positions

which determines the peak for the set, and all other candidates are placed subsequently

to maintain single-peakedness with respect to these peaks. Hence, the pro�le is single-

peaked when projected over P,Q and D. We now prove the equivalence of these two

instances.

For the proof of equivalence, we refer the reader to the arguments for forward and re-

verse directions in �eorem 2. �e arguments work out in exact same way for this case.

We next show the hardness for the utilitarian aggregation function.

�eorem 5. Computing an optimal `1-CC commi�ee with respect to the Borda misrepre-

sentation score is NP-hard even when the domain is a three-composite single-peaked do-

main.

Proof. We combine the ideas from �eorem 3 and �eorem 4 to get the hardness for this

case.

Construction. Let φ be an instance of LSAT with n variables andm clauses. We borrow

the sets C,D with same semantics as in �eorem 4. Note that C = P ∪Q where P and

Q denote the candidates corresponding to the positive and negative literals respectively.

We also use the notations

−−−→
C \ X,

←−−−
C \ X and

←−→
C \ X de�ned earlier for set of candidates

C,X.

We borrow the notations ∆ and τ from �eorem 3 denoting dissatisfaction limit and set

of ∆ unique dummy candidates respectively. Note that D denotes the set of all dummy

candidates introduced in the instance. Let us �x σ to be the ordering of candidates as

follows. �e candidates fromC follow the LSAT ordering and the dummy candidates are

arranged in an arbitrary but �xed ordering at the end in σ. Let σP,σQ and σD denote

the ordering according to σ restricted over set of candidates P,Q and D respectively.

We would now like to setup the votes in such a way that a winning commi�ee cor-

responds to a valid satisfying assignment. We introduce one vote for every clause as

follows. Suppose the clause c consists of the literals (`1, `2, `3), and let the candidates

corresponding to these literals be t1, t2, t3 respectively. If `1 < `2 < `3 in the LSAT

ordering, then we introduce the following vote:

v(c) := t2 � t1 � t3 � τ �
←−−−−−−−−−→
(C \ {t1, t2, t3}) �

←−→
D \ τ

For every variable xi, we also introduce the following (n+1) votes, with 1 6 j 6 (n+1):

v(xi, j) := d[i, j] � pi � qi � τ �
←−−−−→
(P \ {pi}) �

←−−−−−→
(Q \ {qi}) �

←−−−−−−−−−→
D \ {τ ∪ d[i, j]}

�is completes a description of the pro�le. We �x the Borda misrepresentation target

score at two and the commi�ee size is set to n.
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�e proof of correctness works exactly same as in case of �eorem 3. For the analysis of

pro�le, we refer the reader to the analysis in �eorem 4.

�is completes the proof for �eorem 5.

3.5 Conclusion and Open Problems

We have made some progress in demonstrating that the Chamberlin-Courant voting rule

can be computed e�ciently on nearly-structured domains, and there are some notions

of being “almost structured” for which the rule remains hard. Several speci�c problems

remain open. �e most pertinent issue is whether the problem admits a FPT algorithm

when parameterized by the size of a voter modulator to either single-peaked or single-

crossing pro�les.

Another open problem is computations of CC-Winner for 2-crossing pro�les. Resolving

this would complete the investigation for generalized single-crossing domains.
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Chapter 4

Robustness Radius for

Chamberlin-Courant on Restricted

Domains

4.1 Introduction
1

A voting rule is a function that maps a collection of preferences over a �xed set of alterna-

tives to a set of winning options, where each option could be one or more alternatives —

corresponding, respectively, to the scenarios of single-winner and commi�ee elections.

We refer the reader to subsection 1.1.1 for a gentle introduction to voting. A voting

rule is vulnerable to change if small perturbations in the input pro�le can cause for its

outcome to vary wildly. �ere have been several notions in the contemporary computa-

tional social choice literature that captures the degree of vulnerability of various voting

rules.

A recent exercise in this direction was carried out in (BFK
+

17), where the notion of

robustness radius was introduced as the minimum number of swaps that was required

between consecutive alternatives to change the outcome of a multiwinner voting rule.

We note here that we are implicitly assuming that preferences are modeled as linear or-

ders over the alternatives, although the notion of swaps can be de�ned naturally for the

situation where the votes are given by approval ballots. In the work of (BFK
+

17), sev-

eral voting rules are considered, and e�cient algorithms were proposed for Robustness

Radius for many of these rules. On the other hand, for some voting rules, the problem

turned out to be hard: even when the question was to decide if there is one swap that

in�uences the outcome. �is is the motivation for the present work: we focus on the

Chamberlin-Courant voting rule (c.f. Section 2 on Preliminaries for the de�nition), for

which Robustness Radius turns out to be intractable, and look for exact algorithms on

general pro�les and ask if the problem becomes easier to tackle on structured prefer-

ences.

1
Some portions of this chapter are taken verbatim from (MS19)

39



40 Chapter 4. Robustness Radius for Chamberlin-Courant on Restricted Domains

4.1.1 Our Contributions and Organisation of the Chapter

Our �rst contribution is an explicit XP algorithm for the Robustness Radius problem

in the context of the Chamberlin-Courant voting rule. Recall that it is already NP-hard

to determine if there exists one swap which changes the set of winning commi�ees. No-

tice that the natural brute-force approach to check if there are at most r swaps which

a�ect the set of winning commi�ees is to simply try all possible ways of executing

r swaps and recompute the set of winning commi�ees at every step. �is approach,

roughly speaking, requires O((mn)r ·mk) time. We improve this by suggesting an al-

gorithm whose running time can be bounded by O?(mk). We show this result for both

the Chamberlin-Courant voting rule with the Borda misrepresentation function as well

as for the approval version of the Chamberlin-Courant voting rule (where we also show

that an analogous hardness result also holds).

On the other hand, we initiate an exploration of whether the Robustness Radius prob-

lem remains hard on structured preferences. We provide some insights on this issue

by demonstrating that the problem remains NP-hard on “nearly-structured” pro�les. In

particular, we show that:

1. Determining if the robustness radius of a pro�le is one for the `1-CC (respectively,

`∞-CC) voting rule, with respect to the Borda misrepresentation score, is NP-hard

even when the input pro�les are restricted to the six-crossing domain
2

(respec-

tively, the four-crossing domain).

2. Determining if the robustness radius of a pro�le is one for the `∞-CC voting rule,

with respect to the Borda misrepresentation score, is NP-hard even when the do-

main is a four-composite single-peaked domain.

Related Work. �e notion of robustness is also captured by other closely related notions,

such as the margin of victory (MoV) (Xia12) and swap bribery (EFS09). In the former,

the metric of change is the number of voters who need to be in�uenced, rather than the

total number of swaps. On the other hand, in swap bribery, the goal is not to simply

in�uence a change in the set of commi�ees, but to ensure that a speci�c commi�ee

does or does not win (corresponding to constructive and destructive versions of the

problem, respectively). We note that swap bribery has been mostly studied in the context

of single-winner voting rules. Observe that any pro�le that is a non-trivial Yes-instance

of swap bribery is also a Yes-instance of Robustness Radius with the same budget,

but the converse is not necessarily true. Similarly, any pro�le that is a Yes-instance

of Robustness Radius is also a Yes-instance of MoV with the same budget, but again

the converse need not be true. However, we remark that in the case of the Approval-CC

voting rule, the notions of Robustness Radius and MoV happen to coincide. Robustness

has also been studied for single-winner voting rules in earlier work (SYE13).

2
We refer the reader to the Preliminaries for the de�nition of `-single-crossing domains and to the

Appendix for the de�nition of `-composite single-peaked domains.
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4.2 Preliminaries

In this section, we introduce some key de�nitions and establish notation. For a compre-

hensive introduction, we refer the reader to (BCE
+

16; End17).

Notation. For a positive integer `, we denote the set {1, . . . , `} by [`]. We �rst de�ne

some general notions relating to voting rules. Let V = {vi : i ∈ [n]} be a set of n voters

and C = {cj : j ∈ [m]} be a set of m candidates. If not mentioned otherwise, we denote

the set of candidates, the set of voters, the number of candidates, and the number of

voters by C, V ,m, and n respectively.

Every voter vi has a preference �i which is typically a complete order over the set C of

candidates (rankings) or a subset of approved candidates (approval ballots). An instance

of an election consists of the st of candidates C and the preferences of the voters V ,

usually denoted as E = (C,V). A multiwinner commi�ee rule R is a function that, given

an election E and a commi�ee size k, outputs a family R(E,k) of k-sized subsets of

C, such that each of these k-sized commi�ees ties for the victory (i.e. each of these

commi�ees is one of the optimal commi�ees according to R).

We now state some de�nitions in the context of rankings, although we remark that

analogous notions exist also in the se�ing of approval ballots. We say voter vi prefers

a candidate x ∈ C over another candidate y ∈ C if x �i y. We denote the set of all

preferences over C by L(C). A rank of a candidate y according to the voter vi is 1 + the

number of candidates x ∈ C such that x �i y. �e n-tuple (�i)i∈[n] ∈ L(C)n of the

preferences of all the voters is called a pro�le. Note that a pro�le, in general, is a multiset

of linear orders. For a subset M ⊆ [n], we call (�i)i∈M a sub-pro�le of (�i)i∈[n]. For

a subset of candidates D ⊆ C, we use P|D to denote the projection of the pro�le on the

candidates in D alone. A domain is a set of pro�les.

Chamberlin-Courant for Rankings. �e Chamberlin–Courant voting rule is based

on the notion of a dissatisfaction function or a misrepresentation function (we use these

terms interchangeably). �is function speci�es, for each i ∈ [m], a voter’s dissatisfaction

from being represented by candidate she ranks in position i. A popular dissatisfaction

function is Borda, given by αmB (i) = αB(i) = i − 1, and this will be our measure of

dissatisfaction in the se�ing of rankings.

We now turn to the notion of an assignment function. Let k be a positive integer. A

k-CC-assignment function for an election E = (C,V) is a mappingΦ : V → C such that

‖Φ(V)‖ = k, where ‖Φ(V)‖ denotes the image of Φ. For a given assignment function

Φ, we say that voter v ∈ V is represented by candidate Φ(v) in the chosen commi�ee.

�ere are several ways to measure the quality of an assignment functionΦwith respect

to a dissatisfaction function α; we use the following:

1. `1(Φ,α) =
∑
i=1,...,n α(posvi(Φ(vi))), and

2. `∞(Φ,α) = maxi=1,...,n α(posvi(Φ(vi))).

Unless speci�ed otherwise, αwill be the Borda dissatisfaction function described above.

We are now ready to de�ne the Chamberlin-Courant voting rule.
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42 Chapter 4. Robustness Radius for Chamberlin-Courant on Restricted Domains

De�nition 11 (Chamberlin-Courant (CC83)). For ` ∈ {`1, `∞}, the `-CC voting rule is a

mapping that takes an election E = (C,V) and a positive integer k with k 6 |C| as its

input, and returns the images of all the k-CC-assignment functionsΦ for E that minimizes

`(Φ,α).

Chamberlin Courant for Approval Ballots. Recall that an approval vote vi on the

set of candidates C is an arbitrary subset Sv of C such v approves all the candidates in

Sv. We de�ne the misrepresentation score for k-sized commi�ee W for an approval

voting pro�le is de�ned as the number of voters which do not have any of their

approved candidates in W (i.e. W ∩ Sv = φ). Hence the optimal commi�ees under

approval Chamberlin Courant are the commi�ees which maximize the number of

voters with at least one approved candidate in the winning commi�ee. �is notion of

Chamberlin-Courant for the se�ing of approval ballots was proposed by (LS18).

To recall the de�nitions of single-peaked, single-crossing domains, and their generaliza-

tions; we request the reader to revisit Section 2.1.

Robustness Radius. Let R be a multiwinner voting rule. For the given election

E = (C,V), a commi�ee size k, and an integer r, in the R-Robustness Radius problem

we ask if it is possible to obtain an election E ′ by making at most r swaps of adjacent

candidates within the rankings in E (or by introducing or removing at most r candidates

from the approval sets of voters in case of approval ballots) so that R(E ′,k) 6= R(E,k).

We refer the reader to Section 2.3 for a refresher on Parameterized Complexity.

4.3 XP algorithm for Rankings and Approval-CC

�e Robustness Radius problem for the `1-Chamberlin-Courant voting rule with the

Borda dissatisfaction function is known to be in FPT when parameterized by either the

number of candidates or the number of voters. For the former, the approach involves

formulating the problem as an ILP and then using Lenstra’s algorithm. In the case of the

la�er, the algorithm is based on guessing all possible partitions of the voters based on

their anticipated representatives and then employing a dynamic programming approach.

In this section, we give a simple but explicit algorithm for the problem which has a

XP running time in k, the commi�ee size. �is complements the W[1]-hardness of the

problem when parameterized by k (BFK
+

17). We establish this result for both when the

votes are rankings as well as when they are approval ballots. First, we address the case

when the votes are rankings.

�eorem 6. On general pro�les comprising of rankings over alternatives, Robustness

Radius for the `1-Chamberlin-Courant voting rule with the Borda dissatisfaction function

admits a O?(mk) algorithm, wherem is the number of candidates and k is the commi�ee

size.
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Proof. We �rst determine the set of all optimal commi�ees of size k in time O(mk).
Suppose there are at least two commi�ees, say A and B, that are both optimal. �e

manner in which this case can be handled is also addressed in (BFK
+

17). For the sake

of completeness, we reproduce the main point here, but in particular we do not address

certain edge cases: for example, a slightly di�erent discussion is called for if there are

less than k candidates in total occupying the top positions across the votes. We refer the

reader to (BFK
+

17) for a more detailed explanation.

Now, note that sinceA and B are distinct commi�ees, there is at least one voter vwhose

Chamberlin-Courant representative with respect toA and B are distinct candidates: say

ca and cb, respectively. Assume, without loss of generality, that ca �v cb. Note that

swapping the candidate cb so that its rank in the vote v decreases by one results in a

new pro�le where:

1. the dissatisfaction score of the commi�ee B is one less than in the original pro�le,

and,

2. the dissatisfaction score of the commi�ee A is at least its score in the original

pro�le (indeed; the dissatisfaction score either stays the same or increases if ca is

adjacent to cb in the vote v).

�erefore, when there are at least two optimal commi�ees, it is possible to change the

set of winning commi�ees with only one swap, making this situation easy to resolve. We

now turn to the case when the the input pro�le admits a unique winning commi�ee A.

Our overall approach in this case is the following: we “guess” a commi�eeB that belongs

to the set of winning commi�ees a�er r swaps (note that such a commi�ee must exist

if we are dealing with a Yes-instance). For a �xed choice of B, we determine, greedily,

the minimum number swaps required to make B a winning commi�ee. We now turn to

a formal description of the algorithm.

Recall that a pro�le Q is said to be within r swaps of a pro�le P if Q can be obtained by

at most r swaps of consecutive candidates in P. In the following discussion, we say that

a commi�ee B is nearly winning if there exists a pro�le Q, within r swaps of P, where B

is a winning commi�ee. We refer to Q as the witness for B. Note that the existence of a

nearly winning commi�ee B 6= A characterizes the Yes-instances. Let ∆B,A(P) denote

the di�erence between the dissatisfaction scores of the commi�ees B andAwith respect

to the pro�le P. We begin by making the following observation.

Proposition 1. Let P and Q be two pro�les such that Q can be obtained by making at most

r swaps of consecutive candidates in the pro�le P. Note that:

∆B,A(P) − 2r 6 ∆B,A(Q) 6 ∆B,A(P) + 2r.

�e claim above follows from the fact that if Q is a pro�le obtained from P by one swap

of consecutive candidates in some vote of P, then it is easy to see that ∆B,A(P) − 2 6
∆B,A(Q) 6 ∆B,A(P)+2 (in each swap we can at best increase/decease the dissatisfaction

of P and decrease/increase dissatisfaction of Q). Note that if B is nearly winning, then

∆B,A(Q) 6 0, where Q is the witness pro�le. We now have a case analysis based on

∆B,A(P).
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Case 1. ∆B,A(P) > 2r. In this case, by Proposition 1, we know that in every pro�le

Q within r swaps of P, ∆B,A(Q) > 0, which is to say that B will have a greater Borda

dissatisfaction score than A in every pro�le that is r swaps away from the input pro�le.

�erefore, in this case, we reject the choice ofB as a potential nearly winning commi�ee.

Case 2. ∆B,A(P) 6 r. An analogous argument can be used to see that B is in fact

nearly winning in this case. Indeed, any r swaps that improve the ranks of the candidates

in B will result in a pro�le Q that is within r swaps of P and where ∆B,A(Q) 6 0. So, B

is either nearly winning with witness pro�le Q, or A is no longer a winning commi�ee

in Q. �erefore, in this situation, we output Yes.

Case 3. ∆B,A(P) = r + s, 1 6 s 6 r. For a vote v, let A(v) and B(v) denote, re-

spectively, the candidates from A and B with the highest rank in the vote v. Further,

let dB,A(v) denote the di�erence between the ranks of B(v) and A(v). Let W ⊆ V be

the subset of votes for which dB,A(v) > 0, and letw1,w2, . . . denote an ordering of the

votes inW in increasing order of these di�erences. We now make the following claim.

Proposition 2. �ere exists a pro�le Q that is r swaps away from P where ∆B,A(Q) 6 0
if, and only if:

t :=

s∑
i=1

dB,A(wi) 6 r. (4.1)

Proof. In the forward direction, suppose equation 4.1 holds. �en perform swaps in the

votesw1, . . . ,ws so that for any i ∈ [s], the candidate B(wi) is promoted to the position

just aboveA(wi). In other words, each swap involves B(wi) and in the pro�le obtained

a�er the swaps, B(wi) � A(wi) for all i ∈ [s], and the di�erence in the ranks of these

pairs is exactly one. Note that a total of t swaps are performed to obtain this pro�le.

Denote this pro�le by R and note that ∆B,A(R) = r + s − t − s = r − t (since the last

swap made on each vote wi reduces the gap between the dissatisfaction scores of the

two commi�ees by two). Also, (r− t) is also exactly the number of remaining swaps we

can still make, so a witness pro�le can be obtained using the argument we made in the

previous case.

On the other hand, if there exists a pro�le Q that is r swaps away from P where

∆B,A(Q) 6 0, then at least s of those swaps must have been of the form

A(v) � B(v) −→ B(v) � A(v),

for some vote v, since such swaps are the only ones for which the gap between the

dissatisfaction scores of the two commi�ees reduces by two. It is easily checked that if

(4.1) does not hold, and in particular, t > r, then it is not possible to make s swaps of

this form with at most r swaps in total. �is concludes the argument.

To summarize, our algorithm in this case identi�es and sorts the votes inW, and returns

Yes if condition (4.1) holds, and rejects the choice of B otherwise. Observe that we out-

put No if no choice of B results in a positive outcome in this case analysis. In terms of
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the running time, we require O(mk) time in distinguishing whether we have a unique

winning commi�ee or not, and if we are in the la�er situation, we need O(mk) time to

guess a nearly winning commi�ee. For each choice B of a potential winning commi�ee,

we spend time O(mn logn) in the worst case to determine if B is indeed a nearly win-

ning commi�ee. �erefore, hiding polynomial factors, the overall running time of our

algorithm is O?(mk) and this concludes the proof.

We now turn to O?(mk) algorithm for Robustness Radius with respect to approval

ballots. �e general approach is quite analogous to the se�ing of rankings. However,

the notion of swaps is slightly di�erent, and the overall case analysis is, in fact, simpler.

�eorem 7. On general pro�les comprising of approval ballots over alternatives, Robust-

ness Radius for the `1-Chamberlin-Courant voting rule with the Borda dissatisfaction func-

tion admits a O?(mk) algorithm, where m is the number of candidates and k is the com-

mi�ee size.

Proof. (Sketch.) Similar to �eorem 6, we �rst determine the set of all optimal commi�ees

of size k in time O?(mk). Let the dissatisfaction score for optimal commi�ee be dopt.

Notice that in this case of Approval Chamberlin-Courant, dopt is essentially equal to the

number of voters for which no approved candidate appears in the winning commi�ee.

We �rst consider the unique winner case. Let C be an optimal commi�ee, and C ′ be a

second-best commi�ee (if there are more than one second best commi�ees, we consider

any arbitrary commi�ees from those) according to the dissatisfaction scores. Unlike

rankings, in this case, there does not exist any approval or disapproval, which can si-

multaneously increase dissatisfaction for C and decrease dissatisfaction for C ′. Hence,

the sequence of optimal approvals is to choose any vote vi which contributes to the dis-

satisfaction score of C ′, and we add any arbitrary candidate from C ′ to approval set of

vi. We repeat this until the dissatisfaction score for both C and C ′ is equal. Hence, the

robustness radius is equal to the di�erence between dissatisfaction scores for C and C ′.

Now we turn to the case of multiple winners. In this case, we check both the optimal

number of disapprovals required to remove a commi�ee from the winning set and opti-

mal approvals required to add a commi�ee to the winning set. Note that the la�er can

be computed as described in the unique winner case above. In order to remove a com-

mi�ee from the winning set, we need to increase the dissatisfaction score for one of the

commi�ees. For all winning commi�ees, we �nd a vote vi such that the intersection of

approved candidates from vi and the candidates from the commi�ee is minimum. �is

is the minimum number of disapprovals required to increase the dissatisfaction score

of the commi�ee at hand. We compute this minimum number of disapprovals for all

winning commi�ees and choose the minimum value. At last, we compare the “costs”

for both adding and removing a commi�ee from the winning set and choose the option

which demands a lesser number of approvals or disapprovals.

�is completes the overall idea of our algorithm.
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4.4 W[2]-hardness for Approval-CC

We now turn to the case of approval ballots. First, we show that the robustness radius

problem in this se�ing remains NP-hard even for determining if the robustness radius

is one, as was true for the case when the votes were rankings.

�eorem 8. Robustness Radius for the Approval Chamberlin-Courant voting rule is NP-

hard, even when the robustness radius is one and each voter approves at most three candi-

dates. It is also W[2]-hard parameterized by the size of the commi�ee when there are no

restrictions on the number of candidates approved by a voter, and the robustness radius is

one.

Proof. We reduce from the Hitting Set problem. Note that the NP-hardness in the

restricted se�ing follows from the fact that Hitting Set is already hard for sets of size

at most two (recall that this is the Vertex Cover problem), while the W[2]-hardness

follows from the fact that Hitting Set is W[2]-hard when parameterized by the size of

the hi�ing set (CFK
+

15) and our reduction will be parameter-preserving with respect

to the parameter of commi�ee size.

Let (U,F;k) be an instance of Hitting Set. Recall that this is a Yes-instance if and only

if there exists S ⊆ U, with |S| 6 k such that S ∩ X 6= ∅ for any X ∈ F. We construct a

pro�le P over alternatives A as follows. Let:

A := {cu | u ∈ U}︸ ︷︷ ︸
C

∪ {d1, . . . ,dk}︸ ︷︷ ︸
D

Also, for every 1 6 i 6 k, and for every X ∈ F, introduce a vote v(X, i) that approves

the candidates corresponding to the elements in X along with di. �is completes the

construction of the instance. We claim that this instance has a robustness radius of one

if and only if (U,F;k) is a Yes-instance of Hitting Set.

Forward Direction. Suppose S is a hi�ing set for (U,F) of size k. �en the set CS :=
{cu | u ∈ S} and D are two optimal Approval-CC commi�ees with dissatisfaction scores

of zero each. Note that removing the candidate d1 from any vote of the form v(X, 1) will

lead to a pro�le where the set of winning commi�ees contains CS but does not contain

D. Hence, the robustness radius is indeed one.

Reverse Direction. For the reverse direction, suppose the pro�le P has robustness

radius one. We will now argue the existence of a hi�ing set of size at most k. Note that

D is already an optimal commi�ee with respect to P as it has the best possible Approval-

CC dissatisfaction score of zero. Now, suppose P admits another winning commi�ee W

distinct from D. �en notice that the Approval-CC dissatisfaction score of W must also

be zero, and since there is at least one candidate from D (say di) that is not present

in W, it is easy to see that the candidates in C ∩W form a hi�ing set for the instance

(U,F;k) — indeed, note that every voter in the sub-pro�le {v(X, i) | X ∈ F} does not

approve anyone in D ∩W, and therefore must approve someone of in C ∩W, making

this a hi�ing set for F.

46



Chapter 4. Robustness Radius for Chamberlin-Courant on Restricted Domains 47

�erefore, the interesting case is when D is the unique winning commi�ee for P. We

claim that any other subset of candidates W of size k has an Approval-CC dissatisfaction

score of at least two. �is would imply that the robustness radius of P cannot possibly be

one, and therefore there is nothing to prove (note that in the case of approval voting, we

cannot decrease the di�erence in the dissatisfaction scores of two commi�ees by making

one change in the pro�le). To this end, observe that CW := W ∩ C is not a hi�ing set
3

for F: indeed, if CW was a hi�ing set then it is easy to see that W is also an optimal

commi�ee with respect to P, contradicting the case that we are in. Let X denote a set

that is not hit by CW . Now, we consider two cases:

W omits two candidates fromD In this case, there are at least two candidates in D

— say di and dj — who do not belong to W. �en W earns a dissatisfaction score of at

least one from each of v(X, i) and v(X, j), which makes its dissatisfaction score at least

two, as desired.

W omits exactly one candidate from D In this case, notice that |CW | = 1 and

that CW does not hit at least two sets, say X and Y: else CW along with an arbitrarily

chosen element from X and another chosen from Y, along with an arbitrary choice of

k−3 additional candidates would constitute a winning commi�ee in P di�erent from D,

again contradicting the case that we are in. �erefore, observe that di is the candidate

from D that is not present in W, the votes v(X, i) and v(Y, i) contribute one each to the

dissatisfaction score of the commi�eeW.

Overall, therefore, if D is the unique winning commi�ee in P, then the robustness radius

is greater than one, and there is nothing to prove. �is concludes our argument in the

reverse direction.

4.5 Robustness for nearly restricted domains

In this section, we explore the complexity of Robustness Radius on nearly-structured

preferences. We discover that the problem remains NP-hard on slight generalizations

of both single-crossing and single-peaked domains even when the robustness radius is

one. We start the section with hardness results for nearly single-crossing domains and

follow that with hardness on nearly single-peaked domains.

4.5.1 Domains Close to Single-Crossing Domain

We �rst show the hardness for determining robustness radius for utilitarian (`1) aggre-

gation function even when the pro�le is 6-crossing. We note that our overall approach

is similar to the one employed in (BFK
+

17).

3
Note the slight abuse of terminology here: when referring to CW as a hi�ing set, we are referring to

the elements of U corresponding to the candidates in CW . As long as this is clear from the context, we

will continue to use this convention.
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�eorem 9. Determining if the robustness radius of a pro�le is one for the `1-CC voting

rule, with respect to the Borda misrepresentation score, is NP-hard even when the input

pro�les are restricted to the six-crossing domain.

Proof. We reduce from Independent Set on 3-regular graphs. Let (G := (V ,E), t)
be an instance of Independent Set on 3-regular graphs where V ,E denotes the set of

vertices and edges of G respectively. �e problem asks if there a set T ⊆ V with |T | > t
such that for any u, v ∈ T , (u, v) /∈ E. �e hardness for the problem was shown in

(FSS10). We construct a pro�le based on G as follows. Our set of candidates C is given

by:

C := {cu | u ∈ V(G)}︸ ︷︷ ︸
V

∪ {d1, . . . ,dh}︸ ︷︷ ︸
D

∪ {Z0,Z1}︸ ︷︷ ︸
Z

∪ {x1, . . . , xt+1}︸ ︷︷ ︸
X

,

where h is a parameter that we will specify in due course. We refer to the candidates in

X as the safe candidates and Z0 & Z1 are two special candidates. We will use τ denote

a subset of ∆-many unique dummy candidates, where ∆ := 12nt. Now we describe the

votes. Our voters are divided into three categories as follows:

Special candidate votes: �is group consists of t+ 3 copies of the vote,

Z0 � τ � · · ·

�ese votes ensure that every winning commi�ee must include Z0. By · · · we denote

remaining candidates in an arbitrary but �xed order.

“Safe committee” votes: For each candidate xi we have
18t2

t+1
copies of the vote:

vxi := xi � Z1 � τ � · · ·

Independent Set Votes: For every edge {u, v} in the graph, we introduce 2t copies of

following two votes:

u � v � Z0 � τ � · · ·

v � u � Z0 � τ � · · ·

We denote the block of these 4t votes by Vu,v. �e intuition for this is to ensure that if

some commi�ee has both the endpoints of some edge then the overall misrepresentation

will be more than ∆.

�e votes described above together constitute our pro�le P. By �xing an ordering on C

and respecting it on the unspeci�ed votes, it is straightforward to verify that all pairs

of candidates cross at most six times in this pro�le. We note that the candidates cor-

responding to the vertices cross at most six times because the construction is based on

a three regular graph. De�ne k = t + 2 and r = 1. �e `1-CC -Robustness Radius

instance thus constructed is given by (C,P,k = t + 2, r = 1). �is completes the

construction of the instance. We now make some observations about the nature of the

optimal commi�ees which will help us argue the equivalence subsequently.
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Possible winning committees. Let T denote the set of candidates corresponding to

t-sized independent set in G (whenever it exists). We refer to the subset of candidates

given by {Z0, x1, x2, . . . , xt+1} as the safe commi�ee and denote it by S.

Lemma 5. �e constructed pro�le has a unique winning commi�ee if and only if the graph

G has no independent set of size t. �e safe commi�ee S has a dissatisfaction score of ∆

and is always a winning commi�ee. If (G, t) is a Yes instance, then {Z0,Z1}∪ T is also an

optimal commi�ee, where T denotes an independent set of size t in G. Further, any k-sized

commi�ee not of this form will have dissatisfaction strictly greater than ∆+ 1.

Proof. It is easy to see that the dummy candidate will not appear in any optimal com-

mi�ee, since it appears in the top ∆ positions for exactly one vote.

Let us compute the dissatisfaction score for the two proposed commi�ees. For the safe

commi�ee, we get zero dissatisfaction from the special candidate votes and safe commit-

tee votes, and for each edge we get the 8t dissatisfaction which gives us a total dissatis-

faction score of 8t · 3n
2

= 12nt = ∆. For the commi�ee based on the independent set, we

get zero dissatisfaction from the special candidate votes, 18t2 from the safe commi�ee

votes (one per vote) and (3n
2
− 3t) · 8t + 3t · 2t = 12nt − 18t2 from the independent

set detector votes. Hence, for both the commi�ees the total dissatisfaction is ∆. It is

easy to see that this is the best possible dissatisfaction score that can be achieved by any

commi�ee of size k.

Note that any optimal winning commi�ee will have candidate Z0 otherwise, one has to

pick k + 1 dummy candidates (to remain optimal), which would exceed the commi�ee

size. WithZ0 in optimal commi�ee, if we intend to choose only few of x ′is then candidate

Z1 is forced in the commi�ee. With these constraints, now, we only have two possible

structures for any optimal commi�ee. We will analyze both of them in next part of the

proof.

Consider the possible optimal commi�ees which picks Z0,Z1, few endpoints of edges

which are covered twice and the partial independent set (we interpret this partial in-

dependent set as the set of vertices which only has one endpoint with given edge). �e

edges for which both the endpoints are in the commi�ee gives zero dissatisfaction, edges

for which one endpoint lies in the commi�ee gives 2t dissatisfaction, and edges for which

both the endpoints are not in the commi�ee gives 8t dissatisfaction. Hence, the non-

uniformity in dissatisfaction clearly indicates that it is be�er to cover maximum number

of edges by picking one end-point rather than completely losing an edge which causes

very high dissatisfaction . So, with the remaining budget for t-candidates, the commit-

tee with all candidates from independent set will cover maximum edges (to represent by

one endpoint) and will cause strictly less dissatisfaction from any other commi�ee by at

least 2t points.

We now consider a possible winning commi�ee which contains {Z0,Z1}, partial inde-

pendent set and x ′is for the remaining budget of the commi�ee size. Let’s compute

the dissatisfaction for this commi�ee. Say we pick p candidates among the x ′is and

(k− 2− p) = (t− p) candidates from the independent set. �e dissatisfaction is:

(t+ 1− p) · 18t
2

t+ 1
+

(
3n

2
− 3(t− p)

)
· 8t+ (3 · (t− p) · 2t)

49



50 Chapter 4. Robustness Radius for Chamberlin-Courant on Restricted Domains

which simpli�es to: ∆+ (t− p)

(
18t2

t+1
− 18t

)
+ 18t2

t+1
.

For any value of t, it is straightforward to verify that the above expression has value

strictly greater than∆+1. Hence, commi�ees with this structure will also not be optimal.

�is completes the proof for the lemma.

Now, we turn to the equivalence of the two instances.

Forward direction. We need to show that the existence of t-sized independent set in

the graph implies the existence of one swap of adjacent candidates which changes the set

of winning commi�ees for the new election instance (i.e. the robustness radius is one for

the constructed election instance). From Lemma 5, we know that whenever there exist

a t-sized independent set T , we have two winning commi�ees. In this election instance

consider the swap of Z1 with a dummy candidate on right in any of the safe commi�ee

votes. Now the score for {Z0,Z1} ∪ T is ∆ + 1 and it’s not optimal anymore. Hence, we

have changed the set of winning commi�ees. �is completes the argument for forward

direction.

Reverse direction. From Lemma 5, we know that unless independent set exists, any

k-candidate commi�ee other than the safe commi�ee has dissatisfaction score strictly

greater than ∆+ 1. �is entails that there does not exist any swap which can introduce

a new commi�ee in winning commi�ee set (since a single swap can change the score of

any commi�ee by at most one) or can knock o� safe commi�ee from the set. Hence, in

this case robustness radius equal to one forces the existence of required independent set

(since this is the only commi�ee that can change the set of winning commi�ees).

�is concludes the proof for �eorem 9.

To show the hardness of calculating Robustness Radius for `∞-CC for 4-crossing pro�le,

we reduce from LSAT. We next recall the de�nition of LSAT. In an LSAT instance, each

clause has at most three literals, and further the literals of the formula can be sorted

such that every clause corresponds to at most three consecutive literals in the sorted

list, and each clause shares at most one of its literals with another clause, in which case

this literal is extreme in both clauses. �e hardness of LSAT was shown in (ABC
+

15).

For ease of description, we will assume in the following reduction that every clause has

exactly three literals, although it is easy to see that the reduction can be extended to

account for smaller clauses as well.

�eorem 10. Computing the Robustness Radius for `∞-CC with respect to the Borda mis-

representation score is NP-hard even when the domain is four-crossing domain.

Proof. Let φ be an instance of LSAT with variables x1, . . . , xn and clauses C1, . . .Cm.

Towards constructing the election instance, we introduce one candidate for every literal

in φ. Let pi and qi denote the candidates corresponding to the variable xi. We also

introduce n safe candidates Z = Z1,Z2, . . . ,Zn and (2n + 3) dummy candidates for

each variable (which is a total of n(2n + 3) dummy candidates). Let d[i, j] denote the

jth dummy candidate corresponding to the variable xi. We use V to denote the 2n
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candidates corresponding to the literals, Z to denote two safe candidates andD to denote

the set of dummy candidates. Hence, the candidate set C for election is,

C = V ∪ Z ∪D

Let c denote the size of the candidate set C. Let us �x the ordering σ over the set of

candidates as follows. �e �rst n candidates are from safe commi�ee followed by 2n
candidates corresponding to LSAT ordering(`). �e last n(2n + 3) candidates are from

D and are arranged in an arbitrary but �xed order. For a subset of candidates X, the

notation X refers to an ordering of X according to σ. For 1 6 i 6 m − 1, let Gi denote

literals in the setCi\Ci+1, while we letGm denote the literals inCm. For each clauseCi
we introduce a vote vi, which has the safe commi�ee candidate Z1 on the top position,

followed by literals of the clause Ci in next three positions, followed by Z2, and the

remaining candidates in the following order:

vi := Z1 � Gi � Z2 � Gi+1 � · · · � Gm � Gi−1 � · · · � G1 � Z \ {Z1,Z2} � D

It is useful to note that the vote vi+1 can be thought of as a ranking obtained from the

vote vi by “pushing back” the tuple Gi to just behind Gm and pulling up Gi+1 over Z2.

�erefore, the ordering among the Gi’s in vm is reverse of their ordering in v1. Observe

that if a literal occurs inCi∩Ci+1, then it appears among the top three positions of both

vi and vi+1.

We now move to the second part of our pro�le, which consists of votes corresponding

to the variables. Here, for a subset of candidates X, we will use X to refer to an ordering

of X according to vm (say σ ′).

Now, for every variable xi for 1 6 i 6 n − 2, we �rst introduce the following (n + 1)
votes, with 1 6 j 6 (n+ 1).

vi,j := d[i, j] � pi � qi � Z2 � Z1 � (V \ {pi,qi}) � Z \ {Z1,Z2} � D \ {d[i, j]}

Next, for n+ 2 6 j 6 2n+ 2, we introduce the following vote:

vi,j := d[i, j] � pi � qi � Zi+2 � Z2 � Z1 � (V \ {pi,qi}) � Z \ {Z1,Z2,Zi+2} � D \ {d[i, j]}

Finally, we introduce one vote with ordering:

vi,j := d[i, j] � Z2 � pi � qi � Z1 � (V \ {pi,qi}) � Z \ {Z1,Z2} � D \ {d[i, j]}

Notice that for n − 1 6 i 6 n, we do not have fresh Zi+2 (since we only have n safe

commi�ee candidates) we skip n+ 1 votes for n+ 2 6 j 6 2n+ 2. We denote the set of

these votes corresponding to variable xi by Vxi . We �x the commi�ee size k = n.
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�is completes the construction of our pro�le. It is easy to see that the construction

can be completed in polynomial time. In the next part of the proof, we will argue the

equivalence of two instances.

Forward direction. In the forward direction, we need to show that, given a valid assign-

ment for LSAT there exist a swap of adjacent candidates in some vote such that the set

of winning commi�ees for the new election instance is di�erent from the old set.

We assume LSAT instance to be trivial if it is satis�ed by se�ing all the variable to one (we

only consider non-trivial instances). Consider the safe commi�ee Z, the misrepresenta-

tion score for the safe commi�ee is three. LetΦ the satisfying assignment. Consider the

commi�ee of size n formed by the candidates corresponding to the literals which are

set to one in Φ (we abuse the notation and use Φ to represent this commi�ee). Given a

non-trivial instance notice that at least one qi is present in our commi�ee. Hence, the

misrepresentation score of this commi�ee is also three.

Claim 1. Every commi�ee except for Z,Φ has dissatisfaction score of at least �ve or dis-

satisfaction of four with strictly more than one voter having representative a�er the fourth

position.

Proof. We’ll consider all possible commi�ee structures. Consider the commi�ee C =
V ′ ∪ D ′ where V ′ ⊆ V and D ′ ⊆ D such that |V ′| + |D ′| = n. Consider the block

where Vxi such that pi,qi /∈ V ′. Since there are at least n + 1 votes in this block with

distinct dummy candidate in top �ve positions in each vote, there exist a vote which

has representative C with misrepresentation at least �ve. Next, consider a commi�ee

C = D ′ ∪ Z ′. If Z2 /∈ Z ′ then in each block Vxi there exist at least one vote for which

the representative is a�er fourth position. Similarly, if Z1 /∈ Z ′ then for all clause votes

have representative on ��h position. For any otherZi /∈ Z ′ there exist at least two votes

amongst n+ 1 votes in Vxi with Zi in top four position with representative a�er fourth

position (since there are n+ 1 such votes). Finally, consider the case when C = V ′∪D ′
or C = V ′ ∪ D ′ ∪ Z ′ there exist a block Vxi for which neither pi,qi or zi is in the

commi�ee. Note that a similar argument as in the previous case (C = V ′ ∪D ′) works

with by considering the block Vxi .

Note that any commi�ee consisting of only dummy candidates, has dissatisfaction more

than �ve since dummy candidate does not appear in top six positions in votes corre-

sponding to the clauses.

�is completes the proof of the claim.

Given Claim 1, it is easy to see that commi�ees Φ,Z are winners. Consider the swap

qi ↔ Z1 for i such that xi = 0 in Φ. �e misrepresentation score for commi�ee Φ in

the new instance is four whilst the misrepresentation score for Z is three. Hence, we

change the set of winning commi�ees.

Reverse direction. Given RR = 1 we need show that φ is a YES instance. Given Claim 1,

the only way to change the set of winning commi�ees is by removing commi�ee Φ by

performing a swap described in the forward direction. Hence, this gives the existence of

a valid assignment for LSAT instance whenever RR = 1.
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Analysis for crossings. We claim that the pro�le is 4-crossing with respect to following

the order of votes,

v1, v2, . . . , vm, v1,1, . . . , v1,2n+3, . . . , vi,1, . . . , vi,2n+3, . . . , vn,1, . . . vn,n+2

Clearly, there are at most two crossings for any dummy candidate with any other can-

didate (due to the vote in which it appears in the top four positions and the fact that we

use unique dummy candidate in each vote). For safe candidates there is only one cross-

ing between Z1 and Z2 on the boundary of a clause and variable votes, and there are

exactly two crossings between any Zi and {Z1,Z2} in Vxi . For {Z1,Z2} and any other

candidate corresponding to 2n literals, there are exactly four crossings (two in clause

votes when literal comes to top three positions and go back, and another two cross-

ings corresponding to its Vxi block). For any other Zi and candidate from V , there are

exactly two crossings in votes Vxi (i.e. the la�er part of the voting pro�le). At last, we

will analyze the crossings in-between the candidates corresponding to the literals. �ese

candidates will have one crossing in clause votes and two crossings in the variable votes

which gives a total of three crossings.

�is analysis completes the proof for the �eorem 10.

4.5.2 Domains Close to Single-Peaked Domains

�eorem 11. Computing the Robustness Radius for `∞-CC with respect to the Borda mis-

representation score is NP-hard even when the domain is four-composite single-peaked do-

main.

Proof. We note that our construction is similar to that in �eorem 10 with a few changes.

Construction. Let φ be an instance of LSAT with variables x1, . . . , xn and clauses

C1, . . . ,Cm. We introduce one candidate for every literal in φ. Let pi and qi denote

the candidates corresponding to the variable xi. P and Q denote the candidates corre-

sponding to the positive and the negated literals respectively. We also introduce n safe

candidatesZ = {Z1,Z2, . . . ,Zn}, and (n+2) dummy candidates for each variable (which

is a total of n(n + 2) dummy candidates). Let d[i, j] denote the jth dummy candidate

corresponding to the variable xi. We use V to denote the 2n candidates correspond-

ing to the literals, Z to denote two safe candidates and D to denote the set of dummy

candidates. Hence, the candidate set C for election is,

C = P ∪Q ∪ Z ∪D

Let us �x the ordering σ over the set of candidates as follows. �e �rst n candidates are

from safe commi�ee followed by 2n candidates corresponding to LSAT ordering(`). �e

last n(n + 1) candidates are from D and are arranged in an arbitrary but �xed order.

Let σ ′ be the reverse of σ. We denote by σp the LSAT ordering over the restricted set

of agents corresponding positive literals. We de�ne σq in the similar way. For a subset

of candidates X, the notation X refers to an ordering of X according to σ. For a subset

of candidates X ⊂ V , who occupy adjacent positions in the LSAT ordering projected

over V , the notation

−−−→
V \ X refers to an ordering according to σ of the candidates from
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V \Xwho appear a�er X in the LSAT ordering and similarly

←−−−
V \ X refers to an ordering

according to σ ′ of the candidates from V \Xwho appear before X in the LSAT ordering.

�is notation easily yields an ordering which is single-peaked — X �
−−−→
V \ X �

←−−−
V \ X.

We use X �
←−→
C \ X for the shorthand of X �

−−−→
V \ X �

←−−−
V \ X.

We would now like to setup the votes in such a way that robustness radius one implies

an existence of valid satisfying assignment. We introduce one vote for every clause as

follows. Suppose clause Ci consists of literals (li, lj, lk), and li < lj < lk be the LSAT

ordering, then we introduce the vote:

vi := Z1 � lj � li � lk � Z2 �
←−−−−−−→
Z \ {Z1,Z2} �

←−−−−−−−−−→
(V \ {li, lj, lk}) � D

For every variable xi, we introduce the following (n + 2) votes (we denote the set of

these votes by Vxi), with 1 6 j 6 (n+ 1).

vi,j := d[i, j] � pi � qi � Zi �
←−−−→
Z \ {Zi} �

←−−→
P \ pi �

←−−→
Q \ qi �

←−−−−−−→
D \ {d[i, j]}

We then introduce the following vote as a last vote in block Vxi :

vi,j := d[i, j] � Zi � pi � qi �
←−−−→
Z \ {Zi} �

←−−→
P \ pi �

←−−→
Q \ qi �

←−−−−−−→
D \ {d[i, j]}

�is completes the construction of our pro�le. We set the commi�ee size is set to n. We

now turn to the argument for equivalence.

Since the construction of pro�le is similar to �eorem 10, it is easy to show claim anal-

ogous to 1 in the previous proof. �is establishes Z,Φ as winning commi�ees given Φ

is a satisfying assignment for LSAT. Note that we again consider only the non-trivial

instances of LSAT where se�ing all variable to one is not a satisfying assignment.

Given this, the argument for forward and reverse direction hold in a similar way as in

�eorem 10.

Analysis for 4-composite SP. We claim that the pro�le is SP with respect to the partitions

Z,P,Q,D of the candidate set. For the candidates from Z, they are single-peaked with

peakZ1 in clause votes and with peakZi in variable votes. It is easy to see that candidates

from D are SP with respect to the canonical ordering of dummy candidates since for

clause votes these candidates appear in the canonical ordering at the end and for variable

votes, D is single-peaked with candidate d[i, j] as the peak.

From the construction, the candidates from V form a SP pro�le in clause votes since they

follow the LSAT ordering (and hence P andQ are SP too). In the variable votes, P andQ

form a SP pro�le with candidates pi and qi as their respective peaks. Hence, the overall

pro�le is 4-composite single-peaked.

4.6 Conclusion and Open Problems

We demonstrated XP algorithms for the Robustness Radius problem, when parameter-

ized by the size of the commi�ee, for both the `1-CC and the Approval-CC voting rules,
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using a greedy approach. �is complements the known W[1]-hardness of the problem

with respect to this parameter. We also explicitly establish the W[2]-hardness of Ro-

bustness Radius for the Approval-CC voting rule when parameterized by the size of

the commi�ee, even when every voter approves at most three candidates, and when

the robustness radius is one. We also established that Robustness Radius for the `1-

CC and `∞-CC voting rules remains intractable on fairly structured preferences, such as

six-crossing pro�les and four-composite single-peaked pro�les.

A natural direction for further thought is if our XP algorithm can be improved to a

be�er running time, especially on structured pro�les such as single-peaked or single-

crossing domains. A tempting approach is to see if we can exploit the fact that optimal

Chamberlin-Courant commi�ees can be computed in polynomial time on these domains.

One immediate challenge is the following: if we require our swaps to be such that the

resulting pro�le also remains in the domain that we are working on, then the case when

the input pro�le has multiple winning commi�ees is harder to decide: we can no longer

push a commi�ee out of the winning set with one swap, because the said swap may

disturb the structure of the pro�le. We also believe that instead of guessing all possible

choices for a nearly winning commi�ee B, on structured pro�les one might be able to

cleverly anticipate the right choice of B without trying all of them. Another natural

parameter is the Robustness Radius (r), and it would be a non-trivial to obtain FPT with

respect r.
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Matching
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Chapter 5

Stable Matching on Restricted

Domains

5.1 Introduction

�e theory of two-sided matching has been a prevalent research area for the past couple

of decades. A driving force for such extensive research is the wide-spread applicability

to real life scenarios such as college admissions (TST01), resident-hospitals matching

(Rot84), and kidney exchange (Irv07).

In the well known stable marriage (SM) problem, we are given agents partitioned into

two equal-sized subsets which are typically referred to as men and women, and the men

(women) provide their preferences over women (men). Our goal is to match the agents

to each other while avoiding blocking pairs, also known as stable matchings. Given a

matching M, a blocking pair is a pair of agents (a,b) who are not matched by M, but

who prefer each other over their matched partners with respect to M. In this se�ing,

when the preferences of agents are complete orders, a stable matching involving all

agents always exists and can be found e�ciently (GS62). �is polynomial time deferred

acceptance matching algorithm by Gale-Shapley was a seminal result in the theory of

stable matching. A general version of this bipartite matching problem is matching on

general graphs (the problem is popularly known as the stable roommates). In the stable

roommates problem, we a are given single set of agents who express preferences over

each other and the aim to �nd a stable matching. In contrast to the bipartite case, here,

the stable matching might not always exist. It is e�cient to determine when they do if

the preferences are strict and complete linear orders (Irv85).

We now return to our passing remark regarding preferences above. While the choice

of complete and strict rankings is a natural one, in many natural application scenarios,

one would want to relax this to allow for agents to express notions of indi�erence and

absolute non-suitability. Both of these generalizations are, indeed, well-studied: in the

stable roommates problems with ties, we allow for agents to indicate indi�erence be-

tween agents in the ranked order; while in the variant of the problem with incomplete

lists, we allow for the agents to declare some agents as unacceptable altogether by not

featuring them on their preference lists at all. It is convenient to think of the problem of

stable roommates where preferences may have both incomplete lists and ties as a graph

59



60 Chapter 5. Stable Matching on Restricted Domains

where the vertices rank the edges incident to them, in a manner that is not necessar-

ily strict. Both unacceptability and indi�erence are de�ned analogously for the stable

marriage case (Irv94), (IMMM99).

Once we allow for ties and incomplete lists, the complexity of �nding stable matchings,

both in the se�ing of marriages and roommates, changes dramatically. We summarize

the highlights here. If preferences are given as incomplete lists, then both problems

(SRI – Stable Roommates with Incomplete Preferences and SMI – Stable Marriage with

Incomplete Preferences) remain tractable. Note, however, that for the stable marriage

problem, there are instances with incomplete lists which do not admit perfect matchings

any more - a particularly extreme example would be when the list for every agent is

empty. When a non-trivial stable matching exists, then any stable matching matches

the same set of agents for both problems. In the se�ing of ties, note that the notion of

stability needs to be clari�ed further. We will work with “weak” stability, wherein (a,b)
forms a blocking pair with respect to a matchingM if a and b strictly prefer each other

over their current matched partner in M. In this se�ing, although the stable marriage

problem (SMT) remains tractable and all stable matchings match the same set of agents

as before; the stable roommates problem (SRT) is NP-hard. Finally, consider the case

when both ties and incomplete lists are permi�ed in the preferences. Now, in the se�ing

of stable marriages (SMTI), stable matchings may have di�erent sizes, and the problem

of �nding the stable matching of the largest size turns out to be NP-hard. In the se�ing

of roommates (SRTI), checking if a stable matching exists at all is NP-hard. We refer the

reader to (IM08), (Che19) for a detailed survey on the complexity of variants of stable

matching and stable roommates problem.

�e intractability of many matching problems when preferences have ties and/or are

incomplete has motivated several research directions in the literature. One line of work

considers scenarios involving structurally restricted preferences of agents. We refer to the

work of Bredereck et al (BCFN19) for examples of real-world scenarios where agent pref-

erences may naturally be “single-peaked” or “single-crossing”. Examples of results that

are known in this se�ing include the NP-hardness of checking the existence of a stable

matching in the se�ing of SRTI even when pro�les are narcissistic, single-peaked, and

single-crossing (BCFN19); and that the stable roommates problem for complete and strict

rankings (SRT) always admits a (weakly) stable matching that can be found in (linear)

sublinear time on pro�les that are narcissistic and single-peaked (BIT86) or narcissistic

and single-crossing (RBN17).

Another example of a study on structured preferences is the work of Abraham et

al (ALMO07) who demonstrate that weakly stable matchings that match all agents are

guaranteed to exist for the roommates problem in the se�ing of ties and incomplete lists

if the preferences are derived from “globally ranked pairs”. We refer the reader to the

next section for formal de�nitions of the notions of structured preferences alluded to

here.

Algorithmic work on these problems has largely focused on approximating the opti-

mization questions, such as those that ask for the maximum-sized stable matchings,

for instance, as is the case for the problem of SMTI. Also, the complexity of problems

concerning preferences with ties has been studied from a parameterized perspective as

well. In this se�ing, there are three natural parameters: the total number of indi�erence

classes across all agents (κ1), the size of the largest “indi�erence class” (κ2), and the total
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size of all the indi�erence classes in the instance (κ3). �e question here is if the problem

becomes tractable if any of these quantities are small. For instance, in the SMTI se�ing,

for the problem of �nding a largest stable matching, the problem is W[1]-hard when

parameterized by κ1 (MS10), NP-hard when κ2 is a constant and even when lists have

constant size (CIM16), and �xed-parameter tractable with respect to κ3 (MS10).

A phenomenon ubiquitously observed in matching markets is the strategic behaviour of

participating agents. �e motivation for manipulation to obtain a be�er (or the best)

stable matching partner comes due to the inherent bias in the matching mechanisms

such as Gale-Shapley 12. �e interesting issue here is whether agents have an incen-

tive for misrepresenting their preferences i.e. can they manipulate using such prefer-

ences? Unfortunately, Roth (Rot82) has proved that all stable marriage mechanisms can

be manipulated. �is result is analog of the classical Gibbard Sa�erthwaite theorem in

voting (G
+

73), which states that any non-dictatorial rule under the modest assumption

is manipulable. Commonly studied form of manipulation is the truncation manipula-

tion ((GS85), (RR99), (CS14)) where the agents are allowed to present the preferences

over a subset of agents instead of complete lists. Truncation is a powerful model of ma-

nipulation, which can encode any possible manipulation. Another direction which we

consider is the permutation manipulation, where only the permutations of complete lists

are allowed in the manipulated pro�les. E�cient algorithms have been shown for the

computation of optimal permutation manipulation for individual agents and coalitions

((TST01), (KM10), (VG17), (DST18)).

Recently, there has been an interest in studying various notions of Robustness in stable

marriage ((GSOS17), (ML18), (CSS19)). One interpretation of Robust solutions to the

stable marriage problem was recently presented by Genc et. al. (GSOS17). �e authors

de�nes (a, b)-Supermatch as a matching M such that to change the partners of any a-

agents according to M requires changing the partners for at most b other agents. In

the follow-up paper (GSSO19), they showed that checking the existence of even (1, 1)−
supermatch is NP-complete.

5.1.1 Our contributions and Organization of the Chapter

We are now ready to describe our contributions. First, we address a question from Bred-

ereck et al. (RBN17) of �nding a stable matching in the se�ing of SRTI parameterized

by the “degree of incompleteness” of the input instance on structured domains in Sec-

tion 5.3. We borrow the parameters suggested in the work of Marx and Schlo�er (MS10)

and note that the W[1]-hardness persists even for domains that are both single-peaked

and single-crossing. We suggest a new reduction which demonstrates that the prob-

lem is NP-hard when κ2 is a constant and even when lists have constant size and the

preferences are single-peaked and single-crossing, strengthening the result in Cseh et

al. (CIM16), although we believe that our approach is conceptually simpler.

Next, we consider the questions of �nding Sex-Equal stable matchings (SESM) and Egal-

itarian stable matchings in the se�ing of the stable marriage problem. �ese are sta-

bility notions with additional desirable properties — both problems are known to be

intractable in several situations. We extend these known hardness results to restricted

domains. For SESM, the NP-hardness on single-peaked and single-crossing pro�les fol-

lows from an analysis of the NP-hardness reduction that is already shown by McDermid
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and Irving (MI14), where all preference lists have at most three candidates and no ties.

For the question of �nding an Egalitarian stable matching, we show that the problem

is W[1]-hard when parameterized by κ1 even when the input pro�le is single-peaked

and single-crossing. �is result follows by a careful adaptation of construction given by

Marx and Schlo�er (MS10) for the related question of �nding a maximum matching in

the se�ing of SMTI. We describe these results in Sections 5.4 and 5.5, respectively.

We also consider the problem of manipulating a stable matching while staying within

a domain. In a recent result, Vaish and Garg (VG17) show that an optimal permutation

manipulation of the Gale-Shapley mechanism (with men proposing) can be obtained by

only changing the position of exactly one agent in the preferences of a manipulating

woman. We describe examples showing that this is no longer the case if we insist that

the manipulated pro�le respect the structure of the original pro�le. On a di�erent note, it

also follows from the work of Vaish and Garg (VG17) that pro�les which admit a unique

stable matching are not vulnerable to manipulation, even when we do not insist for the

matching output by Gale-Shapley on the manipulated pro�le to be stable with respect

to the truthful pro�le. �is motivates us to expand our understanding of pro�les that

have unique stable matchings. We show that preferences that arise from the Euclidean

domain or from globally ranked pairs have unique stable matchings and are therefore

not vulnerable to manipulation. Although this is implied by a more general result re-

garding pro�les with unique stable matchings, we observe this explicitly so as to be

able to highlight the following contrast: we give examples of pro�les that are “close to”

these structured pro�les but admit exponentially many matchings. We initiate a detailed

discussion in Section 5.7.

In section 5.8, we introduce the problem of �nding a matching that matches a given

subset of agents, which we call a critical set. Problems along these lines have already

received some a�ention in the literature — for instance, the question of �nding a stable

matching with forbidden pairs or the question of �nding a stable matching that extends

a partial matching have been studied. Our motivation for introducing this variant is

to model application scenarios where matching some agents may be more crucial than

others, for example, for reasons of time-sensitivity in a kidney-exchange market. In

such se�ings, the only stable matchings that match a speci�ed subset may not be the

largest stable matchings, so this is a possibly tangential objective that we believe is worth

studying explicitly. We note that this problem is trivial in all se�ings where a stable

matching that matches all agents is known to exist and can be found e�ciently. On

the other hand, we show that the question is W[1]-hard in the context of SRTI when

parameterized by the size of the critical set on pro�les that are single-peaked and single-

crossing, even when κ2 is a constant. It is also W[1]-hard parameterized by κ1 in the

context of SMTI on pro�les that are single-peaked and single-crossing, even when the

critical set has one agent. �e �rst result is obtained by a reduction from a variant

of the Independent Set problem, while the second result can be obtained as a direct

consequence of a reduction by Marx and Schlo�er (MS10).

Finally, for the (a, b)-Supermatch problem, we show an e�cient algorithm to se�le the

special case of (n, 0)−supermatch. Our algorithm is essentially a careful run of Gale-

Shapley algorithm to check if the given instance admits a (n, 0) − supermatch, and

return such matching if there exists one. We further show the hardness for a problem

nearby to the (a,b)-Supermatch which asks for an existence of re-orientation of a partic-
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ular sized set of agents given an instance and a stable matching.

5.2 Preliminaries and Background in Matching

In this section, we will provide the de�nitions that will be relevant to the discussions

throughout this chapter. We refer the reader to Section 2.3, to recall the de�nition of

concepts in parameterized complexity.

We write

(
[n]
2

)
for set {(i, j)|1 6 i 6 j 6 n}.

5.2.1 Problem Setup

We will start with de�ning a stable roommates problem and bipartite stable matching

problem (we will refer this as a stable marriage problem) with ties and incomplete lists.

Stable Roommates Problem:

An instance < V ,P > of stable roommates consists of set Let V = {1, 2, . . . , l} be a set

of ` = 2n agents. Each agent i ∈ V has a preference order �i over a subset Vi ⊆ V of

agents that i �nds acceptable as a partner. �e set Vi is called the acceptable set for the

agent i and a preference order �i over V is a weak order over Vi, that is, a transitive

and complete binary relation on Vi.

Stable Marriage Problem:

�e stable marriage problem is de�ned similarly, except that the set of agents is (M∪W),
where |M| = |W| = n, and set of acceptable agents for each member ofM is a subset of

W, and similarly, the set of acceptable agents for each member ofW is a subset ofM.

In our model, we assume that for any pair of agents (i, j), i is not acceptable to j if and

only if j is not acceptable to i (note that this restricts our model since with the stability

notions under consideration this will be true without loss of generality). We recall that

P is a preference pro�le, which is a collection of preferences of all participating agents

in the instance.

De�nition 12. Matching: Given a preference pro�le P for a set V of agents, a matching

M is a subset of disjoint pairs of agents {x,y} with x 6= y who �nd each other acceptable.

For a pair {x,y} of agents, if {x,y} ∈ M, then by M(x) we denote the corresponding

partner y and M(y) = x; otherwise we call this pair unmatched. We write M(x) = φ

if agent x has no partner, that is, if agent x is not involved in any pair inM.

For the stable marriage case, as the acceptable partners ∀m ∈ M is a subset w ′ ⊆ W,

the matchingM, in this case, will be a set of (m,w) pairs. Notice that although we use

M to denote both the stable matching and the set of men in stable marriage instance,

the usage will be clear from the context (more o�en than not we will precede the word

‘matching’ beforeM to denote a stable matching).

De�nition 13. Blocking Pair: An unmatched pair {x,y} /∈ M is blocking M if the pair

“strictly prefers” (i.e. y �x M(x)&x �y M(y)) to be matched to each other.
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Example 1. m1 := (w1 ∼ w2)

m2 := w1 � w2

w1 := m1 � m2

w2 := m2 � m1

�e matching M = {(m1,w2), (m2,w1)} does not admit any blocking pair under our

de�nition. �e blocking pair with this de�nition sometimes known as strong blocking

pair.

De�nition 14. Stable Matching: A matchingM is stable if no unmatched pair is blocking

M.

Note that this stability concept is called weak stability when we allow ties in the prefer-

ences (1).

We assume, without loss of generality, that for any pair of agents (i, j), i is not acceptable

to j if and only if j is not acceptable to i.

5.2.2 Preferences with ties

For an agent i the rank of an acceptable agent j is de�ned as rank(i, j) = k if i strictly

prefers the agents from precisely k− 1 indi�erence classes to agent j.

A tie for an agent v ∈ V is a subset T ⊆ V \ v of maximum cardinality such that |T | > 2
and rank(v, t1) = rank(v, t2) 6= ∞ for every t1, t2 ∈ T . �e length or size of a tie is

the number of elements in the tie. In the Section 5.1, we referred to ties as indi�erence

classes. Borrowing the terminology and notation from (MS10), we will use the following

parameterization functions, for an instance I of SMTI:

B κ1(I) denotes the number of ties in I.

B κ2(I) denotes the maximum length of a tie in I.

B κ3(I) denotes the total length of the ties in I, which is the sum of the length of

each tie in the instance. We have that κ3(I) 6 κ1(I) · κ2(I).

We recall the de�nitions of single-peaked, single-crossing, Euclidean, and narcissistic

domains from section 2.1. For pro�les which are both single-peaked and single-crossing,

we use SPSC for brevity. We say that a preference pro�le P with ties and incomplete

preferences is single-peaked or single-crossing if there exists a linear extension of P to

P ′ where all the preferences are complete orders (i.e. complete preference lists without

ties) such that P ′ satis�es the domain properties. We note that this de�nition of domain

restriction was used recently by Bredereck et al. in (RBN17). We note that there is also a

notion of “tie-sensitive” single-crossingness, which does not consider linear extensions,

but requires that there exists an ordering of the agents for which all the ties “lie in the

middle”. In the present work, we do not consider the tie-sensitive notion.

64



Chapter 5. Stable Matching on Restricted Domains 65

5.2.3 Variants of Stable Matching Problems

We de�ne a score of matchingM as Σ(x,y)∈Mrank(x,y)+ rank(y, x). Note that an agent

z ∈ V such that z /∈M contributes the score equal to the length of its preference list.

An Egalitarian matching is matching with a minimum score. We denote the problem of

�nding an Egalitarian Matching by Egal-SMTI or Egal-SRTI for a stable marriage and

stable roommate case, respectively.

�e problem of �nding a maximum sized matching given an instance of SMTI (SRTI) is

denoted by Max-SMTI (Max-SRTI).

A Sex-Equal Stable Matching (SESM) is de�ned as the matching which minimizes δ =
|Σ(x,y)∈Mrank(x,y)−Σ(x,y)∈Mrank(y, x)|. �e SESM problem asks for the existence of

a matching with δ ′ 6 δ.

�e notion of Stable Roommates with Globally Ranked Pairs (SR-GRP) implies a restric-

tion on preferences such that the preferences can be derived from a ranking function

f : E(G) → N. An agent x prefers agent y to agent z if e = (x,y), e ′ = (x, z) and

f(e) < f(e ′), and x is indi�erent between them if f(e) = f(e ′). (We can similarly de�ne

(SM-GRP)).

�e concept of (a, b) Supermatch was �rst de�ned by (GSOS17).

(a,b) supermatch: A stable matching M is called an (a,b)-supermatch if for any set

V ′ ⊆ V of a agents decides to break their marriages from matching M, thereby breaking

a pairs, it is possible to �nd another stable marriage M ′ by changing the assignments of

those a agents and at most b others.

Intuitively, we say that it is possible to “repair” matchingM considering the requests by

‘a ′ pairs by disturbing (changing the partners of) at most b other candidates.

It is clear from the de�nition that for any valid (a,b) supermatch instance, a+ b 6 n.

5.2.4 Background and Gale Shapley Algorithm

In the seminal paper (GS62) of Gale-Shapley in 1962, the authors showed that for the

stable matching instance with complete preference lists, there always exists a stable

matching. �e deferred acceptance algorithm (or the Gale-Shapley algorithm) given by

the authors �nd one such stable matching with a special property of male optimality.

�is means that the algorithm returns the matching most preferred by the men (or more

generally the proposing side) among all possible stable matchings in the instance.

�e algorithm proceeds in rounds and each round has two phases.

(i) �e proposal phase, in which each man proposes to his most preferred woman; (ii) �e

rejection phase, where each woman with multiple proposals rejects all proposals except

for the best man according to her preferences. �e algorithm terminates when all men

are matched.

In (ILG87) the authors make two fundamental observations regarding GS-algorithm:

Observation 1. Ifm proposes tow, then there is no stable matching in whichm is matched

to be�er partner than w according to his preferences.
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Observation 2. Ifw receives a proposal fromm, then there is no stable matching in which

w is matched to someone worse thanm according to her preferences.

�e output of Gale-Shapley algorithm has following desirable property for the proposing

side:

�eorem 12. �e output of the algorithm is simultaneously optimal for all men and pes-

simal for women from among all stable matchings (DF81).

La�ice of Stable Matchings: Given a preference pro�le�, and two stable matchings µ

and µ ′, de�ne the join function (µ∨ = µ∨µ ′) as follows: for eachm ∈M andw ∈W:

µ∨(m) =

{
µ(m) if µ(m) �m µ ′(m)

µ ′(m) otherwise

µ∨(w) =

{
µ(w) if µ(w) �w µ ′(w)
µ ′(w) otherwise

Similarly, we de�ne meet function µ∧ = µ∧ µ ′ for eachm ∈M and w ∈W:

µ∧(m) =

{
µ ′(m) if µ(m) �m µ ′(m)

µ(m) otherwise

µ∧(w) =

{
µ ′(w) if µ(w) �w µ ′(w)
µ(w) otherwise

In essence, the join function assigns the best partner among the two matchings and meet

function assigns the worst partner with respect to the preferences of men.

�e following result from (Knu97), a�ributed to John Convay, asserts that the join and

meet operations on any pair of stable matchings gives a stable matching.

Let S the set of all stable matchings in the given instance.

�eorem 13. For µ ∈ S and µ ′ ∈ S, the join (µ∨µ ′) and meet (µ∧µ ′) functions returns

a stable matching.

We will use the above �eorem 12, 13 and the concept of la�ice in section 5.9.

5.3 Stable Roommates with Short Lists and Few Ties

In this section, we show the hardness for the problem of �nding a stable matching in

the context of SRTI. �is problem was recently shown to be NP-complete by Cseh et

al. (CIM16, Section 3), even for constant-length preference lists that have ties of length

at most two. Here, we also demonstrate that the problem is NP-complete, albeit using a

simpler approach, from which it becomes apparent that the problem remains hard even
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when the preference pro�les are single-peaked and single-crossing (SPSC for brevity),

which is not immediate from the construction by (CIM16).

�eorem 14. In the se�ing of SRTI, deciding the existence of a stable matching is NP-

complete even when the preferences have constant length and are SPSC.

Proof. We reduce from (2/2/4)-SAT, which is the variant of Satisfiability where every

clause has four literals and every literal occurs exactly twice — in other words, every

variable occurs in exactly two clauses with positive polarity and in exactly two clauses

with negative polarity. �e question is if there exists an assignment τ of truth values

to the variables under which exactly two literals in every clause evaluate to true. �e

(2/2/4)-SAT problem is known to be NP-complete (RW86).

Construction. Let φ be a (2/2/4)-SAT instance over the variables V = {x1, . . . , xn} and

clauses C = {C1, . . . ,Cm}. Note that m = n. For every variable xi, we introduce four

new variables: pi, ri and qi, si. We replace the two positive occurrences of xi with pi
and ri, and the two negated occurrences of xi with qi and si. We abuse notation and

continue to use {C1, . . . ,Cm} to denote the modi�ed clauses. Corresponding to each

variable xi ∈ V we introduce six agents with preferences:

ai : (pi ∼ qi) � bi � ci
bi : ci � ai
ci : ai � bi

di : (ri ∼ si) � ei � fi
ei : fi � di
fi : di � ei

Next, we introduce the following two agents corresponding to each clause. For clarity,

we demonstrate with an example: let (Ci = xv ∨ xw ∨ xy ∨ xz), then we have:

C1
i : pv ∼ qw ∼ py ∼ pz

C2
i : pv ∼ qw ∼ py ∼ pz

where pi,qi denote one of the positive and negative occurrences, respectively.

Finally, we introduce following four agents corresponding to the four occurrences (two

positive and two negative) of each variable:

pi : (C
1
i ∼ C

2
i ∼ C

1
j ∼ C

2
j) � si � ai

ri : (C
1
i ∼ C

2
i ∼ C

1
j ∼ C

2
j) � qi � di

qi : (C
1
k ∼ C2

k ∼ C1
l ∼ C

2
l) � ri � ai

si : (C
1
k ∼ C2

k ∼ C1
l ∼ C

2
l) � si � di

where xi appears positively in Ci,Cj and negatively in Ck,Cl.

�is completes the construction, we now turn to an argument for the equivalence of two

instances.

Forward direction. Let τ be the satisfying assignment for φ. If τ sets xi to true, we match

pairs {ai,qi}, {di, si} (if xi is false we match pairs {ai,pi}, {di, ri}). We match pi, ri to

one of the two copies of the clauses they appear in, we match the pairs {bi, ci}, {ei, fi}.
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�e agentsai,di,C
j
i, and pi, ri (qi, si for the case when xi is set to false) will not partici-

pate in any blocking pair since they are matched to their top preference. In the remaining

set of agents, for each variable, either its two positive or two negative occurrences are

present. �ese cannot form blocking pair in-between them, since they are not on each

other’s preference list. Hence, the proposed matching is stable.

Reverse direction. Let M be the stable matching for the instance. We use the Lemma 1

from (RBN17) and infer that in any stable matching, ai must be matched to pi or qi and

di must be matched to ri or si. �is implies the pairs {bi, ci}, {ei, fi} ∈ M. We now

show the following lemma.

Lemma 6. In any stable matching M, the pair {ai,di} is either matched to {pi, ri} or

matched to {qi, si} with respective order of agents.

Proof. Consider the case when {ai,di} are matched to {pi, si} respectively, under match-

ing M. Now, consider the pair of agents {pi,qi}, these agents strictly prefer each other

over ai,di respectively, hence, the pair is a blocking pair forM. �is gives a contradic-

tion. A similar contradiction can be obtained in the other case when {ai,di} are matched

to {ri,qi}.

From Lemma 6, it is clear that ai and di are either matched to the two positive occur-

rences or two negative occurrences of variable xi for all i ∈ [n]. Observe that for the

remaining agents (2n clause agents and 2n variable agents), they are top preferences of

each other, and hence, will get matched to each other in any stable matching.

We now recover the assignment of variables from this matching. If agents {ai,di} are

matched to positive copies of the variables xi then we set the variable to false and vice

versa. We claim that this assignment satis�es each clause exactly twice. As, two agents

corresponding to two copies of all clauses are matched underM, every clause is satis�ed

by at least two agents. Notice that among the four agents corresponding to a variable,

exactly two will be matched to two clause agents. �is implies that the number of vari-

ables satisfying each clause is at most two (using a counting argument for the number

of clauses and remaining variable agents). �is concludes the proof of equivalence.

Note that in the above construction the length of a preference list is bounded by six, and

the maximum length of ties is four. Hence, the reduction implies that the problem is

NP-complete even for constant values of κ2. �is eliminates the possibility of even XP
algorithm with respect to κ2.

To see that the pro�le is SPSC, consider the axis:

σ : [Cji] � [Pi] � [Qi] � [Ri] � [Si] � [Ai] � [Bi] � [Ci] � [Di] � [Ei] � [Fi]

for i ∈ [n] and j ∈ {1, 2} where [Pi] denotes set of pi for i ∈ [n], and similarly we de�ne

all the following sets a�er [Pi. Also, the notation [S] for any set of agents S, denotes

an arbitrary �xed ordering of these agents. Note that each of the individual things in σ

denotes the ordered set of all agents of that type. It can be easily checked that the pro�le

is single-peaked and single-crossing with respect to σ when we resolve the ties in favor

of the �xed arbitrary ordering for each set.
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5.4 Sex-Equal Stable Matchings

In this section, we observe the following hardness result.

�eorem 15. Computing SESM with δ = 0 is NP-complete even for SPSC pro�les com-

prising of incomplete preferences of constant length and no ties.

Proof. We reduce from Cliqe. �e claim follows by studying the construction obtained

in (MI14) (Section 5, �eorem 5.8). For completeness, we will now describe the construc-

tion.

Step 1: (�e vertex gadget) In this step for each vi ∈ V we create 4|E|+ 1 (man, woman)

pairs. Each of these men will have either two or three entries in their preference list,

while each woman will have exactly three entries. For this step, we’ll only de�ne �rst

two entries for men and the second and third entries for women. �ird preference of

man mji and �rst preference of women wji will be de�ned later. �e preference lists of

mji,w
j
i for j ∈ [0, 4|E|] looks as follows:

m0
i : w

0
i � w1

i � ∗
m1
i : w

1
i � w2

i � ∗
m2
i : w

2
i � w3

i � ∗
m

4|E|
i : w

4|E|
i � w0

i � ∗

w0
i : ∗ �m4|E|

i �m0
i

w1
i : ∗ �m0

i �m1
i

wii : ∗ �mi−1
i �mii

w
4|E|
i : ∗ �m4|E|−1

i �m4|E|
i

Step 2: (�e edge gadget) For each edge (vr, vs) ∈ E, we introduce two men and two

women. Each of the two men and women have two candidates in their preference lists.

�e preferences of these agents are shown below, again, the entries with asterisk will be

de�ned later.

m1
r,s : w

1
r,s � ∗ w1

r,s : ∗ � m1
r,s

m2
r,s : w

2
r,s � ∗ w2

r,s : ∗ � m2
r,s

Step 3: (Complete the preference lists) For each edge, (vr, vs) ∈ E, with r < s (ac-

cording to arbitrary de�ned order over the vertices), we choose two men created in

step 1, in correspondence to vr and vs by selecting the �rst man mpr (msq) respec-

tively from the sorted list m0
r,m

1
r, · · · ,m

4|E|
r (respectively, m0

s,m
1
s, · · · ,m

4|E|
s whose

third choice has not yet been speci�ed. In this step we complete the preferences for

mpr ,m
q
s ,w

p+1
r ,wq+1

s ,m1
r,s,m

2
r,s,w

1
r,s,w

2
r,s as described below,

mpr : wpr � wp+1
r � w1

r,s

mqs : wqs � wq+1
s � w2

r,s

m1
r,s : w

1
r,s � wq+1

s

m2
r,s : w

2
r,s � wp+1

r

wp+1
r : m2

r,s � mpr � mp+1
r

wq+1
s : m1

r,s � mqs � mq+1
s

w1
r,s : m

p
r � m1

r,s

w2
r,s : m

q
s � m2

r,s

At this stage, we have completed the preference lists for all the men and women created

in step 2 and all men in step 1 (note that some men in step 1 have preference list of length
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two). However, there is still a set of women wji created in step 1 for which we have not

de�ned their top preference. For each of these women, we create a pair of a dummy man

and a dummy woman such that the dummy pair place each other at their top preference,

and we placewji on the dummy man’s preference and de�ne the dummy man as the top

preference for wji. �is way, in every stable matching the dummy man and woman are

paired with each other.

Step 4: (Pad the instance) In this step, we will pad the instance with more agents to obtain

δ(µM) = 0 i.e. the score of men optimal stable matching is zero. Let t = 8|V ||E|+2|V |+
2|E| − [K(8|E| + 2) + 8

(
K
2

)
]. To o�set the score by one, we introduce two men-women

pairs with the following set of preferences:

xi0 : y
i
1 � yi0

xi1 : y
i
1

yi0 : x
i
0

yi1 : x
i
1 � xi0

Proof of equivalence: �e proof of equivalence for our reduction works similarly as shown

in (MI14) and we refer the reader to section 5 of that paper for the further details.

Analysing the preference pro�le: LetMv(Wv) denote the set of all men (women)mji(w
j
i)

introduced corresponding to the vertices in the graph. We de�ne the linear ordering

over these sets as follows:

[Mv] : m
0
1 � m1

1 � · · · � m
4|E|
1 � m0

2 � · · · � m
4|E|
2 � · · · � m0

n � · · · � m4|E|
n

[Wv] : w
0
1 � w1

1 � · · · � w
4|E|
1 � w0

2 � · · · � w
4|E|
2 � · · · � w0

n � · · · � w4|E|
n

LetM[E](W[E]) denote the set of all men (women) introduced corresponding to the edges

in the graph. We de�ne similar arbitrary but �xed ordering. We denote these orderings

by [ME]([WE]).

We denote the set of dummy agents introduced in step 3 by Md(Wd), the arbitrary

but �xed ordering over these agents is denoted by [Md]([Wd]) respectively for dummy

men and women. Similarly, the padding agents introduced in step four are denoted by

Mp(Wp), and the �xed arbitrary ordering over those is denoted by [Mp]([Wp]). Note

that the ordering [Mp]([Wp]) respects the ordering yi1 � yi0(xi1 � xi0).

We will now give a linear orders on set of men and women:

σM : [Md] � [ME] � [Mv] � [Mp]

σW : [Wd] � [Wv] � [WE] � [Wp]

Single-peaked: It is easy to see that the preferences of all the men are single-peaked with

respect to axis σW and with respect to σM for all women. �is implies that there exist a

valid extension single-peaked extension of the partial preference list of every man and

woman.

Single-crossing: It is known that, if every preference list in the pro�le is a sub-order of

two complete preference orders then there a valid extension for each vote in the pro�le

such that the preferences can be ordered in a way that the resultant pro�le is SP. We now

present the two orderings over men and two orderings over women and show that all
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the preferences in the constructed instance I ′ is a sub-order of one of these. One set of

ordering over men and women are the linear orders σM and σW presented above. �e

other set of ordering is as follows:

σM ′ : [Md] � [Mv] � [ME] � [Mp]

σW ′ : [Wd] � [WE] � [Wv] � [Wp]

�e agents from set Mv,Mp are sub-orders of σW , and agents from sets ME,Md are

sub-orders of σW ′ . Similarly, agents from setsWv,Wp are sub-orders of σM and agents

from setsWE,Wd are sub-orders of σM ′ .

Hence, the constructed pro�le is both single-peaked and single-crossing. Note that this

reduction shows the NP-completeness of the problem for SPSC pro�les even when there

are no ties.

5.5 Egalitarian Stable Matchings

In this section, we show that Egal-SMTI is W[1]-hard for parameter κ1. We reduce from

Cliqe which in known to be W[1]-hard for parameter k-size of the clique to Egal-

SMTI through an intermediate reduction to Max-SMTI. Hence, overall, we start from

an instance of Cliqe, construct an instance of Max-SMTI using parameter preserving

construction by Marx and Schlo�er (MS10). �en, we convert thisMax-SMTI instance to

Egal-SMTI to obtain the desired reduction. We further show that the reduced instances

for both Marx and Schlo�er (MS10) for Max-SMTI and for our constructed instance of

Egal-SMTI is SPSC.

�e decision version of Egal-SMTI asks for an existence of marriage with score at most

some given integer δ. Similarly, the decision version of Max-SMTI asks for a matching

of size greater than equal to kwhere k is some given integer. Note that in �eorem 16 we

consider the decision version of Egal-SMTI. We �rst show the construction and equiva-

lence, then we turn to structural properties of constructed preferences for both problems.

�eorem 16. Egal-SMTI is W[1]-hard parameterized by κ1 even when the pro�le is SPSC.

Proof. We �rst describe the preference pro�le obtained from Cliqe for Max-SMTI in-

stance in the reduction from (MS10). Let G = (V ,E) along with a natural number k be

the clique instance such that |V | = n and |E| = m. Assume the canonical ordering of

vertices from set [n]. We will construct an instance I = (X, Y, r) with X, Y being the set

of women and men, and r being the integer input for decision version of Max-SMTI.

Agents: For each i ∈ [k] we introduce, Xi = {xiu| u ∈ [n]} and a global agent xi0, and

the corresponding men Yi = {yiu| u ∈ [n]}, yi0. Similarly, for each (i, j) ∈
(
[k]
2

)
(we

recall from Section 5.2 that we write

(
[n]
2

)
for set {(i, j)|1 6 i 6 j 6 n}) we introduce,

Xi,j ∪ {xi,j0 } with Xi,j = {xi,ju,z| u < z, (u, z) ∈ E}, and the set of men Yi,j ∪ {yi,j0 } with

Yi,j = {yi,ju,z| u < z, (u, z) ∈ E}. Additionally, introduce set of women P = {pi| i ∈
[
(
k
2

)
+ 2]} and set of menQ = {qi| i ∈ [

(
k
2

)
+ 2]}. Let X = Xi ∪ {xi0}∪Xi,j ∪ {x

i,j
0 }∪ P be
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the overall set of women, and Y = Yi ∪ {yi0}∪ Yi,j ∪ {y
i,j
0 }∪Q be the overall set of men

in the instance such that |X| = |Y| = t. Let ν be the bijection from [
(
k
2

)
] to set

(
[k]
2

)
, and

for each i ∈ [k],u ∈ [n] let C(i,u) = {xi,ju,z| i < j 6 k,u < z, (u, z) ∈ E} ∪ {xj,iz,u| 1 6
j < i, z < u, (z,u) ∈ E}.

We introduce 2t2 dummy women [D] = [d1,d2, · · · ,d2t2 ] and men [D ′] =
[d ′1,d

′
2, · · · ,d ′2t2 ]

We now move on to the preferences of the agents. For any set S of agents, we denote

the indi�erence among these agents by (S) and a �xed ordering by [S]. Let k ′ denote

(
k
2

)
.

Preferences:

xiu : yiu � yi0 � [D ′]

xi0 : y
i
0 � (Yi) � [D ′]

xi,ju,z : y
i,j
u,z � [yiu,y

j
z] � y

i,j
0 � [D ′]

xi,j0 : yi,j0 � (Yi,j) � [D ′]

ph : qh+1 � yν(h)0 � qh � [D ′]

pk ′+1 : (qk ′+1,qk ′+2) � [D ′]

pk ′+2 : qk ′+2 � [D ′]

d1 : d
′
1 � [Y]

d2 : d
′
2 � [Y]

.

.

.

d2t2 : d
′
2t2 � [Y]

yiu : xi0 � [C(i,u)] � xiu � [D]

yi0 : [X
i] � xi0 � [D]

yi,ju,z : x
i,j
0 � xi,ju,z � [D]

yi,j0 : [Xi,j] � pν−1(i,j) � xi,j0 � [D]

qh ′ : ph ′ � ph ′−1 � [D]

q1 : p1 � [D]

qk ′+2 : pk ′+1 � pk ′+2 � [D]

d ′1 : d1 � [X]

d ′2 : d2 � [X]

.

.

.

d ′2t2 : d2t2 � [X]

Figure 5.1: Preferences for egalitarian matching instance

In Fig. 5.1 h ∈ [k ′] and h ′ ∈ [2,k ′+1] where [2,k ′+1] = {2, 3, . . . , k ′+1}. For ordered

sets [Y], [D], [D ′], [X] we will de�ne the ordering later in analysis of the pro�le, for now,

it is okay to assume any arbitrary �xed ordering of agents from each set. Note that only(
k
2

)
+k+ 1 women – xi0 for i ∈ [n], xi,j0 for (i, j) ∈

(
[k]
2

)
, and pk ′+1 have indi�erence. In

the above construction, an instance without blue agents is from the original reduction

given in (MS10). We use these additional agents for transforming from Max-SMTI to

Egal-SMTI to establish the required hardness.

Note that for dummy agents from sets D and D ′, any stable matching will match di to

d ′i for i ∈ [2t2]. Hence, for a stable matching M, any unmatched agent in the instance

except for dummy agents will contribute a large amount to the total score with respect

toM. By se�ing the score δ for Egal-SMTI appropriately, we can di�erentiate between

the cases where the original instance had a matching of size greater than or equal to

r or strictly less than r where r is the input to the Max-SMTI instance. We set δ =
t× 2r+ (2t2 + t)× 2(n− r) + 2× 2t2. We next give the proof of equivalence.

Forward direction: Given a YES instance of Max-SMTI, let M be the matching with

at least r matched pairs from set X ∪ Y. We now construct a matching M ′ for the
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constructed Egal-SMTI instance. We augment M to M ′, and add the matching pairs

of all 2t2 dummy agents as described earlier. We claim that M ′ is a stable matching

with score at most δ. �e stability for M ′ follows from the stability of M and the

constructed preferences of the dummy agents. For the score of M ′, the matched 2r
agents from X∪Y contribute at most 2t (since these 2r agents are matched to the agents

which appear in their top t positions) and the remaining unmatched agents contribute

2(n − r) × (t + 2t2). Each dummy pair contributes exactly 2 to the score. Hence, the

overall score t× 2r+ (t+ 2t2)× 2(n− r) + 2× 2t2 6 δ.

Reverse direction: Here we show that if a stable matching M of Egal-SMTI matches

strictly less than r pairs from the set of agents {X ∪ Y} then score(M) > δ. We now

compute the lower bound on the score of such a matchingM. We again emphasize that

in any stable matching, for i ∈ [2t2], agent di is matched to agent d ′i. To consider the

tightest case, let the matching M contain (r − 1) matching pairs from {X ∪ Y}. �ese

matched pairs will contribute at least 2(r−1)×1 to the score(M). �e unmatched agents

from X∪Y will add 2(t−r+1)×(1+2t2), and the dummy agents will add 2×2t2 to the

score. �e overall score of (M) > 2(r− 1)× 1+ 2(t− r+ 1)× (1+ 2t2)+ 2× 2t2 > δ.
Hence, any matchingM with score(M) 6 δ matches at least r pairs from {X ∪ Y} which

implies that the given instance is a YES instance for Max-SMTI (since the agents from

these pairs are matched to each other inM they must be stable in the original instance).

�is completes the argument of equivalence.

Analysis of the pro�le: Consider the orderings:

[X] : [xi0] � [xi,j0 ] � Xi,j � Xi � p1 � p2 � · · · � pk ′+2

[Y] : [yi0] � [yi,j0 ] � Yi � Yi,j � qk ′+2 � qk ′+1 � � q1

�e single-peaked ordering for women is σW : [X] � [D] and for men is σM : [Y] � [D ′].
In the preference pro�les constructed in Fig. 5.1; by [S] for some set S of agents, we

denote the ordering of these agents according to the single-peaked ordering described

above. Given this, it is easy to verify that the preferences for all candidates are single-

peaked with respect given ordering.

Preferences of men are single-crossing with ordering:

[Yi] � [Yi,j] � [yi,j0 ] � q1 � qk ′+2 � [yi0] � [qh ′] � [D ′]

of the agents in the instance, and the preferences of women are SC with respect to:

[xi0] � [xi,j0 ] � [Xi] � [Xi,j] � ph � pk ′+1 � pk ′+2 � [D].

Note that the above analysis shows that the pro�le from the reduction in (MS10) is also

SPSC (since it is a sub-pro�le of the constructed pro�le), this implies hardness for Max-

SMTI even when preferences are SPSC. �e number of agents with ties in the constructed

instance is same as that in Max-SMTI, hence, Egal-SMTI is W[1]-hard parameterized by

κ1 even when only women can have ties and the preferences are SPSC.
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5.6 Domain-Restricted Manipulation

In this section, we consider the issue of single-agent manipulation for the Stable Mar-

riage problem. We focus on the notion of permutation manipulation, which only allows

the preference lists to be a permutation of the complete ordering over the agents of the

opposite sex. �e �rst comprehensive study of permutation manipulation was done by

Teo et al. in (TST01). �ey show that unlike truncation manipulation, the permutation

manipulation model is far more restrictive in terms of possibilities of manipulation. In

particular, in the men-proposing variant of the Gale-Shapley mechanism, women cannot

always force the mechanism to return the women optimal matching. An easy illustration

is given by the example where men’s preferences are narcissistic i.e. for each woman;

there exists a unique man which places her at the top of his preference list. In this case,

under any permutation manipulation, no women can improve her matching partner un-

der Gale-Shapley. Teo et al. also gave a polynomial time algorithm to �nd an optimal

manipulation for any given women. In this case, the optimal manipulation means the

set of preferences which yield the best possible partner under permutation manipulation

(which can be di�erent from the women optimal partner).

�e work was followed by Vaish and Garg in (VG17). �ey show that the optimal

permutation manipulation can be obtained by only changing the position of exactly

one agent in the preferences of the manipulating woman. �e authors refer to such

manipulation as “inconspicuous manipulation”. In what follows in this section, we

show that the possibilities of manipulation on restricted domains are limited when we

additionally force the manipulated pro�le to be in the domain under consideration. In

particular, we observe that unlike the general domains, an inconspicuous manipulation

cannot always achieve an optimal partner while staying within the domain. We

also show that the optimal partner obtained while staying within the domain (not

necessarily inconspicuously) can be strictly sub-optimal compared to one that can be

obtained when there are no restrictions. Now, we provide examples to support this

discussion.

Observation 3. Obtaining an optimal manipulation inconspicuously while staying within

the domain is not always possible for a Stable Marriage instance.

Example 1: Sub-optimal Manipulation when restricted to inconspicuous manipulation

m4 : 1 � 2 � 3 � 4 � 5
m1 : 2 � 1 � 3 � 4 � 5
m5 : 2 � 1 � 3 � 4 � 5
m2 : 3 � 2 � 4 � 1 � 5
m3 : 3 � 4 � 2 � 1 � 5

w4 : 5 � 4 � 3 � 2 � 1
w5 : 5 � 4 � 3 � 2 � 1
w2 : 4 � 3 � 2 � 5 � 1
w1 : 3 � 4 � 2 � 5 � 1
w3 : 2 � 3 � 1 � 4 � 5

Figure 5.2: Original Preference Pro�le

Note that in Figure 5.2 the numbers denote the corresponding agent of the opposite sex.

�e pro�le P in Fig. 5.2, is single-peaked with axes:

σm := m1 −m2 −m3 −m4 −m5 σw := w1 −w2 −w3 −w4 −w5
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�e pro�le is also single-crossing with respect to the given sequence of men and women.

If we run the Gale-Shapley algorithm on pro�le P in Fig. 5.3 we obtain the matching:

M : {(w1,m4), (w2,m5), (w3,m2), (w4,m3), (w5,m1)}

Consider the pro�le (P ′) with the preference list ofw1 := 3 � 2 � 1 � 4 � 5. We keep

preferences of all other agents as it is. �e blue colored men represent the new matching

(under P ′).

Notice that in the pro�le P ′ the partner for w1 is m3 which is an optimal partner

according to her true preferences. It is only possible to obtainm3 as a partner when we

place 3 � 1 � 4 in the preferences of w1. It is easy to see that the described preference

relation cannot be obtained inconspicuously while staying within the domain but can

be obtained conspicuously while staying within the domain (pro�le P ′ achieve such a

preference relation).

Observation 4. �e optimal partner which can be obtained while staying within the do-

main can be sub-optimal compared to the partner that can be obtained without domain

restriction for a Stable Marriage instance.

Example 2: Sub-optimal Manipulation with domain restriction

m1 : 5 � 4 � 1 � 2 � 3
m2 : 4 � 1 � 2 � 3 � 5
m3 : 2 � 1 � 4 � 5 � 3
m4 : 1 � 2 � 3 � 4 � 5
m5 : 1 � 2 � 4 � 5 � 3

w1 : 1 � 3 � 2 � 4 � 5
w2 : 4 � 1 � 3 � 2 � 5
w3 : 1 � 3 � 2 � 4 � 5
w4 : 5 � 4 � 1 � 3 � 2
w5 : 3 � 1 � 4 � 2 � 5

Figure 5.3: Original Preference Pro�le

�e pro�le (P) in Fig. 5.3, is single-peaked with axes:

σm := m5 −m4 −m1 −m3 −m2 σw := w3 −w2 −w1 −w4 −w5

�e matching (M) in the original preferences pro�le P is:

M : {(w1,m4), (w2,m3), (w3,m5), (w4,m2), (w5,m1)}

For the manipulated pro�le (P ′) we havew1 := m3 � m5 � m4 � m2 � m1. Note that

the manipulated pro�le is not single-peaked with respect to σm axis. In the manipulated

pro�le (P ′) the partner forw1 ism3 which is her optimal partner in the original pro�le.

We claim that there does not exist any pro�le which is SP and gives matching with

m3. In order to get a proposal from m3, w1 must reject m4 which can only happen if

m5 �w1
m4 (andm3 is preferred over both of these). �is cannot be achieved by staying

within the domain.
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5.7 Domains with Unique Stable Matching

In this section, we present a class of preferences which admits unique stable matching

(1-D Euclidean Preferences) and study a few properties of domains with Globally Ranked

Pairs de�ned in (ALMO07). An important motivation to study these classes is that they

do not su�er from Roth’s impossibility theorem (Rot82, �eorems 4 and 6) and are not

vulnerable to manipulation.

5.7.1 1-D Euclidean Preferences

Lemma 7. A two-sided matching instance with strict complete orderings over agents that

respect a 1D-Euclidean ordering admits a unique stable matching.

Proof. �e preferences of the Euclidean domain are derived from the ordering of men

and women on the common axis (see Fig. 5.4 for one such axis). Using this fact, it is clear

that the �rst choice for every agent will be the next consecutive agent from the opposite

gender immediately to its right or to the le� (in particular, the closer of the two options).

m1 w1 m2 mi wj wn−1mn wn

Figure 5.4: Ordering of the agents on the axis along with their �rst choices

Claim 2. For a 1D-Euclidean Domain, there exist a pair of agents (mi,wj) such that they

are each other’s top preferences.

Proof. We denote by Fi the �rst preference of an agent i. We’ll prove the claim using

contradiction. Assume that there does not exist any (mi,wj) pair such that mi and wj
are the �rst preferences of each other. Without loss of generality assume thatm1 is the

le�most agent and wn is the rightmost agent. Using the property of the domain, we

know that Fm1
:= w1 and Fwn := mn. From our assumption it implies that Fwi := mj

only if j > i. But this gives a contradiction for wn since Fwn := mk for k 6 n.

It follows that the (mi,wj) obtained from Claim 2, has to be matched to one another in

any stable matching. We form a pair (mi,wj) and remove them from the instance. It

is easy to check that the domain follows the hereditary property. Hence, the obtained

pro�le is 1D-Euclidean. We repeatedly apply Claim 2, form a pair, and remove the pair of

agents from the instance. Since at every step, the pair removed was the forced matching

pair; the instance admits a unique stable matching.

It is possible to �nd the argued unique stable matching e�ciently. �e matching algo-

rithm given by Bartholdi III and Trick in (BIT86) works for the Euclidean domain. �e

algorithm runs in time O(n) time, which means it does not even read the input instance

completely.
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5.7.2 Globally Ranked Pairs

We now consider the preferences derived from Globally Ranked Pairs (GRP) and we de-

note the Stable Matching problem in this se�ing by SM-GRP. As mentioned earlier, the

notion was �rst de�ned in (ALMO07). �e authors show that these preference pro�les

follow the Globally-Acyclic Preferences (GAP) restriction (Proposition 1.1, (ALMO07))

which implies the that the instance cannot have any odd or even sized ring/cycle. As

GRP preferences follow GAP restriction, for any instance (I) of SM-GAP, we do not have

any rotations in I (since rotations are even length rings). Since the set of rotations is in

one-to-one correspondence with the set of stable matchings, there exists a unique stable

matching for I since there are no rotations.

We next give an alternative proof for the Unique Stable Matching in these instances. We

show that the pro�le follow Eckhout’s condition 1 from (Eec00) which indeed implies

unique stable matching for the instance.

Lemma 8. �e preference pro�le derived from the Globally Ranked Pairs follows Eckhout’s

Condition 1.

Proof. Let σ be the global order of the pairs and (mi,wj) be the �rst pair in the order.

We claim that both mi and wj are the �rst preferences of each other. Otherwise, if mi
prefers wk � wj then the pairs (mi,wj) and (mi,wk) don’t follow the global rank of

pairs which is a contradiction. In any stable matching, (mi,wj) must be matched to

each other. We pair up (mi,wj) and remove all them from the instance by deleting all

the pairs mi or wj participate in from σ (let us call the new ordering σ ′). It is easy to

see that the domain follows the hereditary property. Hence, the modi�ed instance still

belongs to the domain with new global ordering σ ′. Repeating the same procedure for n

iterations will return the unique stable matching and ordering of man-woman pairs. We

observe that bothmi andwj matched in the ith iteration must have a partner with rank

6 i in their respective preferences. �e ordering of men and women corresponding to

the order returned by the algorithm follows Eckhout’s condition 1.

Corollary 1. For a two-sided stable matching instance I, if all the agents from one of the

sides have identical preferences and the agents from other side have any arbitrary prefer-

ences, then I admits a unique stable matching.

Proof. Let us assume that all the men have an identical preference list mi := w1 �
w2 � · · · � wn. We will now construct the global ordering of pairs such that all the

preferences in the instance comply with the ordering. Place all the pairsw1 participates

in at the top followed by pairs of w2 and so on to construct σ. It is easy to see the

preferences of both men and women have the same ordering asσ. It follows that instance

I belongs to the globally ranked pairs domain and hence admits a unique stable matching.

Lemma 9. �ere is no incentive for single-agent manipulation even when the relax the

constraint of stability of manipulated matching with respect to original instance.
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Proof. For contradiction, let M be the unique stable matching in the original instance

andM ′ be the stable matching in the manipulated instance andM ′ is strictly be�er for

manipulating agent (sayw1). Rohit et al. ((VG17) �eorem 5) showed that the matching

obtained through an optimal manipulation is stable with respect to original preferences.

Let the set S be the set of stable matchings obtained from manipulated pro�les which

give strictly be�er matching partner for w1. S 6= φ since M ′ ∈ S. Let M ′′ ∈ S be the

optimal manipulation forw1. We knowM ′′ is stable with respect to original preferences.

Since the original preferences admit unique stable matching, M ′′(w1) = M(w1). For

wi := M ′′(w1) � M ′(w1) (since M ′′ is optimal). �is contradicts a contradiction as

w ′1s partner inM ′ was supposed to be strictly be�er than that inM.

Next we discuss the properties of preference domains which are close to 1D-Euclidean

or Globally Ranked Pairs domain. We show a sharp contrast in the number of stable

matchings possible in these domains.

5.7.3 Nearby Domains with large number of stable matchings

We discuss the examples in two sided matching se�ing. First we will de�ne some ter-

minology for ease in generalization of pro�les. Pi denote the ordered set of candidates

(2i − 1 � 2i) and Pi denote the set (2i � 2i − 1). Pi appearing in man’s (woman’s)

preference represents pair (w2i−1 � w2i)((m2i−1 � m2i)) respectively.

Pro�les with arbitrary preferences on one side and two preference pro�les on the other side:

Example 3: 2-pro�les on one side

m1 : P1 � P2 � · · · � Pn2
m2 : P1 � P2 � · · · � Pn2
m3 : P2 � P3 � · · · � P1
m4 : P2 � P3 � · · · � Pn2 � P1

.

.

.

mn : Pn
2
� Pn

2 −1 � · · · � P2 � P1

weven : P1 � P2 � · · · � Pn2
wodd : P1 � P2 � · · · � Pn2

Figure 5.5: Instance with 2 types of preferences on one side

In the above pro�le the pair (w1,w2) appears on the top for (m1,m2). Also, (m1,m2)
appears on the top for all the women; in particular for (w1,w2). Hence, the pairs will

be matched to each other in any stable matching. We now repeat the same argument

on the modi�ed instance for (m3,m4) and (w3,w4) pair. �e argument holds for all
n
2

pairs P ′is. In each of the pair Pi both ((m2i−1,w2i−1), (m2i,w2i)) are stable matches.

With each pair contributing 2 possible con�gurations for stable matching, we obtain 2
n
2

stable matchings.
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SP-SC Pro�les: We note the pro�le in Example 3 is already SP with axes:

σm := m1 � m2 � · · · � mn

σw := w1 � w2 � · · · � wn

All the women (men) have their preferences single-peaked with respect to axis σm(σw)
respectively. Let us analyze the ordered pair of candidate Pi. w2i−1 � w2i until the

preference pro�le of man m2i−1 and w2i � w2i−1 from therea�er. Now we’ll analyze

the ordering across the pairs. Every pair Pi crosses all pairs Pj such that j > i for

i, j ∈ [1,n/2] once it appears at the top in the preferences of men m2i−1,m2i. �is

ensures that every block crosses every other block at exactly once. Overall, any two

agents cross each other exactly once, hence, the pro�le is single-crossing.

1D Euclidean Pro�les with ties: We borrow the notations from Example 3 and add P ′i
which indicates the indi�erence between the pair i.e.(w2i−1 ∼ w2i).

Example 4: 1D Euclidean with ties

m1 : P̃1 � P2 � · · · � Pn2
m2 : P1 � P2 � · · · � Pn2
m3 : P̃2 � P3 � · · · � P1
m4 : P2 � P3 � · · · � Pn2 � P1

.

.

.

mn : Pn
2
� Pn

2 −1 � · · · � P2 � P1

w1 : P̃1 � P2 � · · · � Pn2
w2 : P1 � P2 � · · · � Pn2
w3 : P̃2 � P3 � · · · � P1
w4 : P2 � P3 � · · · � Pn2 � P1

.

.

.

wn : Pn
2
� Pn

2 −1 � · · · � P2 � P1

Figure 5.6: 1D-Euclidean Preferences with ties

For each pair Pi := (w2i−1,w2i), Pi appears on the top for pair of men (m2i−1,m2i)
and vice verca for pair Pi := (m2i−1,m2i) in the women’s preferences. Hence,

in any stable matching the agents from these pairs will get matched to each other.

Note that for each such pair Pi, both M := (m2i−1,w2i−1), (m2i,w2i) and M ′ :=
(m2i−1,w2i), (m2i,w2i−1) are weakly stable matchings. Hence, will

n
2

such P ′is there

exist exponential number of weakly stable matchings.

5.8 Matching Critical Set

In this section, we consider the problem of �nding, given a subset of “critical” agents, a

stable matching that matches all critical agents. We call the problem Matching Criti-

cal set. We study this in the context of SRTI, where we already obtain W[1]-hardness

when parameterized by the number of critical agents.

�eorem 17. In the se�ing of SRTI, Matching Critical Set is W[1]-hard when parame-

terized by the size of the critical set even when the preferences are SPSC.
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Proof. We reduce from the Multi-Colored Independent Set (MCIS) problem. Given

a partition of vertices in k color classes, MCIS asks for an independent set of size k

which contains exactly one vertex from each color class. For a given instance ofMCIS,

let U1,U2, · · · ,Uk be the set of vertices corresponding to k color classes. Without loss

of generality assume that every color class contains n vertices where n is odd. For every

color class, we introduce set Ui of n vertex agents (u1
i ,u

2
i , · · · ,uni ) and a critical agent

Ci for i ∈ [k]. We denote the set of k-critical agents by C. Let a linear order over the

vertex agents for a given color class be σvi : u1
i − u

2
i − · · · − uni , and the ordering of

critical agents be σC : C1 � C2 � . . . � Ck. We next de�ne the preferences of the

agents.

Preferences: For each vertex agent uji the preference order is:

uji : (u
j−2
i ∼ uj−1

i ∼ uj+1
i ∼ uj+2

i ) � [N(uii)] � Ci

for i ∈ [k], j ∈ [n]. Note that indices in the superscript are computed modulo n. Further,

each critical agent Ci has preference order:

Ci : u
1
i � u2

i � . . . � uni

We ask for a stable matching which matches all the agents from set C. �is completes

the description of the instance, we now turn to the proof of equivalence.

Forward direction: Given a MCIS S, for uji ∈ S, we form a matching pair (uji,Ci) for

i ∈ [k]. Now we modify σvi by removing agent corresponding to the given independent

set for every color class and maintaining the rest of the order (let σv
′

i denote the modi�ed

ordering). With remaining n − 1 vertex agents in each color class, we match bn
2
c pairs

of adjacent agents going from le� to right according to σv
′

i .

In the proposed matching, for uji ∈ S, all the agents appearing before Ci in their pref-

erence orders are matched to their �rst choice, hence they don’t participate in blocking

pair with uji. By the same reasoning, the critical agent Ci does not have any hope of

forming a blocking pair with any other uji. Hence, the proposed matching is stable and

matches all agents from C.

Reverse direction: Given a stable matchingM involving all C ′is, we claim that the vertex

agents matched to C ′is under the matching M form a MCIS. It is easy to see that the

set (say S ′) of the matching partner of C ′is, contains one vertex from each color class.

�is is because each Ci prefer agents from unique color class. For the contradiction,

let u, v ∈ S ′ share an edge. Notice that u and v both strictly prefer the set of their

neighbors to respective C ′is. �is implies that (u, v) is a blocking pair for M which is

a contradiction. Hence, we can recover MCIS from the matching. �is completes the

proof of equivalence.

Notice that the preference pro�le obtained in the construction is single-peaked and

single-crossing with respect to:

σ1 : [U1] � [U2] � · · · � [Uk] � σC

where each [Ui] denote the ordering according to σvi . To show the single-crossingness,

consider another ordering:
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σ2 : [U2] � [U3] � · · · � [Uk−1] � [Uk] � [U1] � σC;

σ3 : [U3] � [U4] � · · · � [Uk] � [U2] � [U1] � σC;

.

.

.

σk : [Uk] � [Uk−1] � · · · � [U3] � [U2] � [U1] � σC.

By resolving the ties and arranging agents in N(uji) according to one of the σi in the

preferences of each of uji for i ∈ [k], j ∈ [n]; we order these agents according to the

increasing order of the color classes. �is is a single-crossing ordering over the agents.

�us, this reduction shows W[1]-hardness on SPSC pro�les when parameterized by the

size of the critical set, for constant κ2.

�e following observation follows as a Corollary of (MS10, �eorem 2).

�eorem 18. In the se�ing of SMTI, Matching Critical Set is W[1]-hard parameterized

by κ1 for a critical set of size one

Proof. Recall the construction from �g. 5.1 and ignore the dummy candidates from

the construction (i.e. consider the part of the pro�le from the original reduction from

(MS10)). We set the of critical agents C : {pk
′+2} a singleton set. We claim that the

instance admits matching involving pk
′+2

if and only if there exist a clique of size k.

�e main idea of the reduction is that the agent pk
′+2

is involved only in the maximum-

sized matching, and such a matching corresponds to a YES instance of clique. Hence, a

matching involving pk
′+2

is equivalent to existence of a clique. For the further details

of the we refer the reader to (MS10, �eorem 2).

5.9 Special cases of (a,b)-Supermatch

�e (n, 0)-Supermatch:

In this section, we show that checking if (n, 0) supermatch exists and �nding it for the

given stable matching instance can be done e�ciently. We also give a novel algorithm

to check whether a given matching is (n, 0) − supermatch with polynomial running

time. Unlike the (2, 0) case shown by (GSOS17) (�eorem 3), the (n, 0) supermatch does

not cease to exist for n > 2. �e simplest example of (n, 0) is considering the Stable

Matching instance where Men optimal (MO) and Women optimal (WO) matchings are

completely di�erent. In that case, we can consider one of MO or WO as initial matching

and the other one as the �nal matching; this shows the existence of (n, 0)-supermatch

in this instance.
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Existence and search of (n, 0) − supermatch

We now describe the procedure to check whether given instance of Stable Matching

admits a (n, 0) − supermatch.

Consider the Gale-Shapley output (µ) on the given instance. From �eorem 12, we

know that (µ) matches each man to its best possible partner and each woman to her

worst possible partner among the set of stable matchings. Run the Gale-Shapley by

swapping roles of men-women, let the matching obtained be µ ′. It is easy to see that µ ′

is optimal for all women and pessimal for all men. We go through the partners assigned

to each man in µ and µ ′, if µ(m) = µ ′(m) for some m ∈ M then we declare that the

instance does not have (n, 0) − supermatch. �is is true because if the optimal µ(m)
and pessimal µ ′(m) partner ofm is same thenmwill have the same partner in all stable

matchings, hence, there cannot exist a (n, 0) − supermatch in the instance.

If the partners for all men are di�erent in µ and µ ′ (i.e. ∀m ∈M: µ(m) 6= µ ′(m)) then

we output one of µ or µ ′ as (n, 0) − supermatch for the instance.

In the next section, we describe an algorithm to verify that given matching is (n, 0) −
supermatch.

Veri�cation Algorithm

Our algorithm is essentially an extension of simple Gale-Shapley procedure keeping in

mind the forbidden pairs (the matching pairs given in the input matching) constraints

imposed by initial stable matching given as an input for the (n, 0) − supermatch ver-

i�cation problem.

Description of the algorithm: �e input to the algorithm is the preference pro�le � in-

dicating the preferences of all agents and a stable matching µ ′ to verify. Our algorithm

proceeds in iterations with each iteration consisting of two procedures – Find Match

procedure and Cleaning preferences procedure applied sequentially. We’ll now describe

the �ow of our algorithm using these two procedures.

In the �rst iteration, we begin with the Find-Match procedure which runs Gale-Shalpley

on given preference pro�le � and terminates by �nding the male optimal matching (µ)
(In the �rst iteration, the arguments to Find-Match procedure arem1 as unmatched man,

preferences from 1st rank for m1, original complete preference pro�le, and an empty

initial matching). We check the partner of each manm in µ; if µ(m) = µ ′(m) for some

m ∈M then we note that µ contains a forbidden pair. We store the setM ′ ⊆M s.t. for

m ∈ M ′, µ(m) = µ ′(m). If M ′ = φ, then we return ’YES’ since µ is the witness for

µ ′ being (n, 0) − supermatch. If M 6= φ, we call the Cleaning preferences procedure.

In this procedure, for each woman w ∈ W we remove all men appearing a�er µ(w) in

�w. For an arbitrary m ∈ M ′, we break the matching and remove m from �µ(m) (we

setm ′ to be this man in Algorithm 1.

From iteration two on-wards, we get the partial matching (where exactly one manm ′ is

unmatched), and we get the modi�ed preference pro�le (�). We run the Gale-Shapley

algorithm from that state (with n − 1 matched pairs). �e algorithm starts with m ′

proposing to the woman appearing further down (a�er µ(m)) in his preference list. We

stop when all the men are matched (say in matching µ ′′) and check for the set M ′ as
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described earlier. According to the state of set M ′ we either return with output ’YES’

or call Cleaning preferences procedure. We continue iterating over these two procedures

unless we return ’YES’ or we run out of proposals for any m ∈M (i.e. we reach till the

end of preference list ofm) in which case we return ’NO’ instance.

Algorithm 1: Algorithm for verifying (n, 0)-supermatch

Input: A preference pro�le � and matching µ ′

Output: ’YES’ if µ ′ is (n, 0) − supermatch, ’NO’ otherwise.

1 µ← None . initializing the intermediate matching
2 M ′ ← None . initializing the set of forbidden pairs
3 m ′ ← m1 . initializing unmatched man
4 rankm ′ ← 1 . initializing proposing sequence for m ′ in next

iteration

5 while True do

6 M ′ ← φ . reset set of forbidden pairs
7 µ← Find−Match(m ′, rankn ′ ,�,µ) . calling Find-Match procedure
8 for i = 1 to n do

9 if µ(mi) == µ ′(mi) then
10 M ′ ←M ′ ∪ (mi,µ(mi) . add a forbidden pair to M

11 end

12 end

13 ifM ′ = φ then

14 return ’YES’ . found matching with no forbidden pairs
15 end

16 m ′ ← m s.t. m ∈M ′ . choosing arbitrary man in M ′

17 µ← µ \ (m ′,µ(m ′)) . breaking the marriage for chosen man
18 rankm ′ = rank(m

′,µ(m ′)) + 1 . proposing sequence for m ′

19 �← Cleaning− Preferences(�,µ) . calling Cleaning-Preferences
procedure

20 end

21 return ’NO’

Proof of correctness:

Lemma 10. If algorithm return a matching µ, µ is stable.

Proof. We show the proof by contradiction. Let (mi,wj) be the blocking pair in µ. �is

implies that: wj �mi
µ(mi) andmi �wj µ(wj). Sincemi is matched to someone worse

thanwj, in the run of Algorithm 1mi proposed towj and got rejected. �is can happen

either whenmi is present inw ′js list but she rejected him favor a be�er partner ormi is

not present in the preference list ofwj which again can happen only whenwj is matched

to someone be�er (since the Cleaning Preferences procedure only remove men fromw ′js

list when she is matched or mi is the forbidden partner which cannot be the case since

µ is the outcome of the algorithm). �is implies that wj is matched to someone strictly

be�er than mi in matching µ, which contradicts the assumption that (mi,wj) forms a

blocking pair.
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It is easy to see that whenever algorithm return ’YES’ we have the witness matching for

which all men have di�erent partners than in the given matching µ ′ and hence µ ′ is a

(n, 0) − supermatch.

Let S be the set of all stable matchings which avoid matching the agents paired in in-

put matching µ ′. We claim that, if S 6= φ, then there exist s ∈ S such that s is male

optimal (i.e. simultaneously optimal for all men). �is can be shown as follows: Con-

sider matchings s1, s2 ∈ S such that m1 is assigned be�er partner in s1 compared to

s2, and m2 is assigned be�er partner in s2 compared to s1. Notice that for m1 and m2,

their partners in both matchings s1, s2 are not forbidden since s1, s2 ∈ S. Consider the

matching s3 = s1 ∨ s2, s3 belongs to S as S contains all stable matchings which does

not contain forbidden pairs. Hence, there exist s ∈ S which is simultaneously optimal

for all men.

We need to show that whenever S 6= φ the algorithm returns
′YES ′.

Lemma 11. Whenever S 6= φ, Algorithm 1 returns ’YES’. Moreover the algorithm termi-

nates by obtaining Stable Matching s ∈ S such that s is male optimal matching in S.

Proof. (Proof by contradiction) Consider for a given instance of stable matching the set

S is non-empty. Let s ′ ∈ S be the male optimal matching in S. We are in the case when

algorithm returns ’NO’. �is implies that there exist a man mi ∈ M who ran out of

proposals i.e. we exhausted all women in preference list of mi in particular, mi either

proposed someone strictly less preferred than s ′(mi) or s ′(mi) is the last woman in

m ′is list and she rejectedmi.

Letmj be the �rst man who either proposes someone strictly less preferred to s(mj) or

reaches end of the preference list. Let s(mj) = wj. We next analyze the proposals ofmj
and show the contradiction.

B 2 possible scenarios:

1. mj proposes to wj and gets rejected: mj can get rejected either when mj is

present in the preference list ofwj, andmj proposes towj butwj is matched

to someone be�er say mk. Since mj was the �rst man to propose someone

strictly less preferred to s(mj), we have,

mk : wj �mk
s(mk)

. We also know,

wj : mk �wj mj

due to the case we are in. �is implies that (mk,wj) forms a blocking pair

for s, a contradiction.

In the other case, whenmj is not present in the preference list ofwj, andmj
proposed to wj, this can happen only when wj is matched someone be�er

saymk. A�er this point we repeat the above argument.

2. (mj,wj) is a blocking pair (i.e. a matched pair in µ ′): �is case cannot occur

since this contradicts with the membership of s in S.
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Hence, we showed that the man mj cannot exist. �is implies that there does exist a

man who proposes someone strictly less preferred to s(m) in the run of our algorithm

when S 6= φ. Given that the algorithm terminated only when stable matching is found

or there exist a man who runs out of proposals, the algorithm must return swhen S 6= φ.

�is completes the proof of our claim.

�eorem 19. Deciding whether an instance admits (n, 0)-supermatch is in P.

Proof. �e proof follows from Lemma 10 and 11. �e running time of the algorithm

is same as that of Gale-Shapley algorithm – O(n2) for instance with n agents on each

side.

Corollary 2. Given a stable matching µ, and �xed set of A of a candidates, it is polyno-

mially veri�able if there exists a stable matching µ ′ which re-orients the partners for men

in set A and retrieves the partners form ∈M \A.

Proof. Let I ′ be the instance formed by restricting the original instance I to the candi-

dates from setA and their matching partners (µ(A). We modify (trim) the preferences of

agents in I ′ to eliminate any cross blocking pairs i.e. the blocking pairs formed between

the agents from I ′ and the agents from I \ I ′. We refer the reader to (Knu97) (Chapter

6 section 3) for further details on the preference pro�le modi�cation. Once the prefer-

ences are modi�ed, we apply Algorithm 1 to the modi�ed instance I ′. If the algorithm

returns ’YES’ then we know that the matching can be re-oriented else the matching can-

not be re-oriented without disturbing any other pairs. �e proof of correctness for the

procedure described can be worked out similarly as done for Algorithm 1.

5.9.1 Hardness result for nearby problem

In this section we show that the decision problem of existence of some a− sized subset

(S) of M (the set of all men) which for given some stable matching of µ admits a re-

orientation of matchings (�nd a new partner for these a men) without disturbing the

matching partner of any man outside set S is NP-hard. Notice that this is analogous

to a weaker version of (a, 0) supermatch question which asks for existence of a stable

matching µ ′ whether all sets of size a can be re-oriented without a�ecting any matching

outside this set for a given set of preferences.

�eorem 20. It is NP-complete to decide whether there exist an a− sized subset S ⊆M
which admits re-orientation of matchings in between the elements of S.

Proof. We reduce from the Cliqe problem. In the Cliqe problem, we are given (G :
V ,E) and an integer k; we need to determine whether G has k − sized Clique as a

subgraph.

Construction: Our construction is similar to the one presented in (MI14) (Section 5, �eo-

rem 5.8). Since we don’t have any notion of the score of a matching in our re-orientation

problem, we only need the �rst three steps from their reduction.

Step 1: (�e vertex gadget) In this step for each vi ∈ V we create 4|E|+ 1 (man, woman)

pairs. Each of these men will have either two or three entries in their preference list,
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while each woman will have exactly three entries. For this step, we’ll only de�ne the

�rst two entries for men and the second and third entries for women. �ird preference

of man mji and �rst preference of women wji will be de�ned later. �e preference lists

ofmji,w
j
i for j ∈ [0, 4|E|] looks as follows:

m0
i : w

0
i � w1

i � ∗
m1
i : w

1
i � w2

i � ∗
m2
i : w

2
i � w3

i � ∗
m

4|E|
i : w

4|E|
i � w0

i � ∗

w0
i : ∗ �m4|E|

i �m0
i

w1
i : ∗ �m0

i �m1
i

wii : ∗ �mi−1
i �mii

w
4|E|
i : ∗ �m4|E|−1

i �m4|E|
i

Step 2: (�e edge gadget) For each edge (vr, vs) ∈ E, we introduce two men and two

women. Each of the two men and women have two candidates in their preference lists.

�e preferences of these agents are shown below, again, the entries with asterisk will be

de�ned later.

m1
r,s : w

1
r,s � ∗ w1

r,s : ∗ � m1
r,s

m2
r,s : w

2
r,s � ∗ w2

r,s : ∗ � m2
r,s

Step 3: (Complete the preference lists) For each edge, (vr, vs) ∈ E, with r < s (ac-

cording to arbitrary de�ned order over the vertices), we choose two men created in

step 1, in correspondence to vr and vs by selecting the �rst man mpr (respectively,

msq) from the sorted list m0
r,m

1
r, . . . ,m

4|E|
r (respectively, m0

s,m
1
s, . . . ,m

4|E|
s whose

third choice has not yet been speci�ed. In this step we complete the preferences for

mpr ,m
q
s ,w

p+1
r ,wq+1

s ,m1
r,s,m

2
r,s,w

1
r,s,w

2
r,s as described below,

mpr : wpr � wp+1
r � w1

r,s

mqs : wqs � wq+1
s � w2

r,s

m1
r,s : w

1
r,s � wq+1

s

m2
r,s : w

2
r,s � wp+1

r

wp+1
r : m2

r,s � mpr � mp+1
r

wq+1
s : m1

r,s � mqs � mq+1
s

w1
r,s : m

p
r � m1

r,s

w2
r,s : m

q
s � m2

r,s

At this stage, we have completed the preference lists for all the men and women created

in step 2 and all men in step 1 (note that some men in step 1 have preference list of length

two). However, there is still a set of women wji created in step 1 for which we have not

de�ned their top preference. For each of these women, we create a pair of a dummy man

and a dummy woman such that the dummy pair place each other at their top preference,

and we placewji on the dummy man’s preference and de�ne the dummy man as the top

preference for wji. �is way, in every stable matching, the dummy man and woman are

paired with each other.

�is completes the construction for our reduction. We set a = k× (4|E|+ 1) + 2×
(
k
2

)
where k is the size of the clique. We next show the proof of equivalence for the clique

and matching instance.

We use some structural properties of the construction as shown in (MI14).
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Lemma 12. �e men optimal matching in the derived instance of matching re-orientation

problem matches every man in step 1 and step 2 to his �rst choice. Consequently, each

woman on step 1 and step 2 is matched to her last choice.

Proof. �e proof for this lemma is evident from our construction.

Lemma 13. For each vertex vi ∈ V , there exist a rotation ρi =
(m0

i ,w
0
i), (m

1
i ,w

1
i), . . . , (m

4|E|
i ,w

4|E|
i ).

Proof. We refer reader to the proof of Lemma 5.4 from (MI14). Note the di�erence that

for our reduction we do not need the notion of weights of the rotation.

Lemma 14. For every edge vr, vs ∈ E, where r < s. �e elimination of both ρr =

(m0
r,w

0
r), (m

1
r,w

1
r), . . . , (m

4|E|
r ,w

4|E|
r ) and ρs = (m0

s,w
0
s), (m

1
s,w

1
s), . . . , (m

4|E|
s ,w

4|E|
s )

exposes a rotation ρr,s = (m1
r,s,w

1
r,s), (m

q
s ,w

q+1
s ), (m2

r,s,w
2
r,s), (m

p
r ,w

p+1
r ) for some

p,q ∈ {0, 1, 2, . . . , 4|E|}.

Proof. We refer the reader to the proof of Lemma 5.5 in (MI14).

Lemma 15. �e rotation poset for Sex-Equal Stable Matching instance contains exactly

one rotation ρi for every vertex v ∈ V , and one rotation ρr,s from every edge (vr, vs) with

r < s. �e predecessor of ρr,s are exactly ρr and ρs and there is no predecessor for ρi.

Proof. We refer the reader to the proof of Lemma 5.6 in (MI14).

Forward direction: Given the yes-instance of clique, let the set S = {v1, v2, . . . , vk} be the

set of vertices which participate in clique. We eliminate the rotations ρi corresponding

to k−vertices in the clique. �is re-orients the partners of k× (4|E|+1) agents since we

change the partners of all the copies of a vertex. Consider the set E ′ of

(
k
2

)
edges shared

between the clique vertices. We also eliminate the rotations for each e = (vr, vs) ∈
E ′. Each of these rotations changes the partner for four men. But notice that for two

of these four men agents, the partner was changed when we eliminated the rotations

corresponding to clique vertices. Hence, there are only two new men who change the

partner for each eliminated edge rotation. By summing over all the k vertex rotations

and

(
k
2

)
edge rotations, it can be veri�ed that exactly a agents re-orient their partners.

Reverse direction: From Lemma 6, we know that there is exactly one rotation correspond-

ing to each vertex and one rotation corresponding to every edge. �e elimination of

vertex rotation ρi changes partners for exactly 4|E| + 1 agents and the elimination of

edge rotation changes the partner for four agents. By simple counting argument, it can

be veri�ed that no subset of edge rotation eliminations can change partners for 4|E|+ 1
agents. �is implies that with a = k × (4|E| + 1) + 2 ×

(
k
2

)
one must have eliminated

exactly k vertex rotations ρi and

(
k
2

)
edge rotations. We also know that the edge rota-

tion ρr,s is exposed only when ρr and ρs are eliminated (lemma 5). Let S be the set of

k vertices for which we eliminated the rotations. Since we were able to eliminate

(
k
2

)
edge rotations; these edges must have both their endpoints in set S. �is implies that

the vertices form set S forms a k− clique.

�is completes the proof for �eorem 20.
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5.10 Experimental Results on Restricted Domains

In this section, we study the performance of the Gale-Shapley algorithm on single-

peaked preferences. A few studies have been done on the performance of Gale-Shapley

for the case of general preferences (CS06), (NR09). For restricted domains, our analysis

is novel to the best of our knowledge.

Experimental Setup.

We generate the general and single-peaked pro�les as follows: For general pro�les, we

choose preference order for each candidate uniformly at random from all possible n!
ways, where n is the number of women (men). To generate single-peaked pro�les, we

�rst �x the single-peaked ordering of the agents along an axis arbitrarily. For each voter,

we choose a ’peak’ uniformly at random from n possible options. Next, we toss a coin

with sides L and R. Depending upon the outcome of the toss, we �ll-up subsequent

positions in preference order by moving right or le� of the peak on single-peaked axis.

When we reach the end of either side of the axis, we place the rest of the agents in the

unique order.

Observations and results.

We run Gale-Shapley on the instances with ten agents to 490 agents on each side with

a step of 10. In each iteration, we run for a hundred instances of a particular size and

record number of proposals made in each such run. We plot the average number of

proposals vs the size of the instance in Fig. 5.7.
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Figure 5.7: Comparison of proposals in Gale-Shapley for general vs restricted domain

(SP)
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Chapter 5. Stable Matching on Restricted Domains 89

From the observations, it is clear that Gale-Shapley needs a signi�cantly large amount of

proposals to construct men optimal stable matching for single-peaked domain compared

to the general domain.

Conclusion.

�e popular Gale-Shapley algorithm takes a signi�cantly longer time on restricted do-

mains. One solution would be designing a mechanism that takes advantage of structured

domains, but this task seems daunting. �e decentralized mechanisms such as (RV90) or

(Tam93) might work well or might be easier to tweak to account for the domain restric-

tion.

5.11 Concluding Remarks and Open Problems

We studied several problems related to �nding stable matchings in the bipartite

se�ing as well as roommates in the context of preferences that might have ties and/or

incomplete lists. Our goal was to understand if restricting the preference pro�le to a

structured domain is useful for ge�ing be�er algorithms for various problems related

to stable matchings, especially for problems that are intractable for general pro�les.

Our overall �nding is that most problems, including ones capturing strategic behavior

like manipulation, continue to remain hard for restricted domains. One question we

would like to deliberate upon is the following: we have been working with the idea

that a pro�le with incomplete and indi�erent preferences structured if it admits any

extension to a structured pro�le — possibly this is too weak a notion, as evidenced by

all the hardness results. Possibly a more stringent notion of extensions will help the

design of e�cient algorithms.

Open Problems.

In the context of SRTI, does the problem of �nding a stable matching remain W[1]-hard

when parameterized by κ1 for pro�les that are narcissistic SPSC? Similarly, does the

problem remain NP-hard for constant values of κ2 for pro�les that are narcissistic SPSC?

�e problem is already NP-hard in this se�ing (BCFN19), so it would be interesting to

se�le its parameterized complexity.

Apart from this, we believe it would be interesting to resolve the complexity of �nd-

ing an optimal permutation manipulation that is restricted to respect a given domain

(say, single-peaked or single-crossing). Also, one can study the notion of permutation

manipulation on mechanisms other than Gale-Shapley.

We would like to point the a�ention of the reader to a long-standing interesting open

problem in the stable marriage se�ing, the characterization of preference pro�les which

admits unique stable matching. �ere have been several a�empts in last two decades

which includes the result for single-peaked narcissistic pro�les for stable roommates

(BIT86), a general condition by Eckhout (Eec00), (Cla06), domain with globally ranked

pairs (ALMO07), and recent result by Karpov (Kar19); these results discover several

classes of unique matching preference pro�les.
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90 Chapter 5. Stable Matching on Restricted Domains

Finally, in the case of (a, b)-Supermatch problem, we se�le the case of (n,0)-Supermatch

by giving a polynomial time procedure, and it is shown to be NP-complete for the case

of (1, 1)-Supermatch. �e intermediate case of (a, 0)-Supermatch where a is an integer

input parameter remains open. We suspect that the problem can be shown to be hard

with respect parameter a.
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Chapter 6

Extension Problems in Stable

Matching

6.1 Introduction

We borrow the acronyms and notations from Chapter 2 and Section 5.2.

We de�ne extension problem in the context of stable matching. Given a preference pro�le

with incomplete and indi�erent lists (a general SRTI instance), we are asked if there

exists an extension of this pro�le a pro�le with complete orderings for all agents.

In Section 6.3, we consider the problem of �nding special extension of a preference pro-

�le. �ese special preferences have a property that the pro�le has a unique stable match-

ing. Such pro�les are of interest since they have many desirable properties; one such

property is resistance from manipulation.

Our problem is inspired from the previous works in qualitative analysis of stable match-

ing problems for the case of incomplete and indi�erent preferences. �e work by Aziz et

al. (ABG
+

16), (ABF
+

17) focuses on the questions such as �nding the necessary/ possible

winner when the preferences in the pro�le are derived from a certain known collection

of preferences. Another direction was considered by Menon and Larson in (ML18); they

consider the problem of �nding a matching which admits the least number of blocking

pairs when summed over all possible complete extensions of given partial pro�le.

6.2 Preliminaries

De�nition of extension problem: Given a partial pro�le P over the set of agents A,

our aim is to �nd an extension ofP ′ ofP such that each�∈ P ′ is complete strict ordering

over rest of the agents (or agents of opposite sex in case of stable marriage).
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92 Chapter 6. Extension Problems in Stable Matching

6.3 Extension to Unique Matching Pro�le

6.3.1 Extension to general preferences

In this section, we start with the question described above for the general preferences

and show the hardness result. We follow this result with two special cases of this problem

in the hope to get e�cient algorithms.

�eorem 21. It is NP-hard to determine the existence of a complete pro�le with strict

orderings which admits a unique stable matching given an SRTI instance.

Proof. We show the reduction from Multi-Colored Independent Set (MCIS). Given

a partition of vertices in k color classes, MCIS asks for an independent set of size k

which contains exactly one vertex from each color class.

Construction. For a given instance of MCIS, let U1,U2, · · · ,Uk be the set of vertices

from k-color classes. Without loss of generality assume that every color class contains

n vertices where n is odd. For every color class, we introduce set Ui of n vertex agents

(u1
i ,u

2
i , · · · ,uni ) and set Si of n selector agents (s1i , s

2
i , · · · , sni ) for i ∈ [k]. We denote

the set of agents by A = ∪i∈[k](Ui ∪ Si). Let the ordering of the vertex agents for

a given color class be σvi : u1
i − u

2
i − · · · − uni for i ∈ [k]. We will now de�ne the

preferences of these agents.

For each selector agent sji for i ∈ [k], j ∈ [n], the preferences are:

sji : uji � s
j−1
i � sj+1

i � [rest]

and for each vertex agent uji:

uji : (uj−2
i ∼ uj−1

i ∼ uj+1
i ∼ uj+2

i ) � [N(uji)] � s
j
i � [rest]

�e indices in the superscript are computed modulo n. By [N(uji)] we denote the

neighbors from other color classes of jth vertex from color class i in an arbitrary order.

For every agent, the set [rest] at the end of the preference list is unique for each agent

and denotes the set of agents apart from the ones appearing before [rest] in some

arbitrary preference order. For example consider sji, in this case the ordered set [rest]

contains the agents A\{uji, s
j−1
i , sj+1

i }. Note that for each sji we already have a complete

strict ordering, and for each uji we have a complete preference list with ties.

We now turn to the equivalence of the two instances.

Forward direction. Given a k− sized multicolored independent set S; if jth vertex from

color class i is present in S, then we resolve ties for uji arbitrarily. Now we modify

σvi by removing agents corresponding to independent set for every color class and

maintaining the rest of the order (let σv
′

i denote the modi�ed ordering), each of these

ordering contains even number of agents. For each odd ranked agent in σv
′

i we place

the agent next to it at the top position and do vice versa for even numbered agent i.e.
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Chapter 6. Extension Problems in Stable Matching 93

for j ∈ {1, 3, . . . ,n− 2} we place (j, j+ 1) at each other’s top position. Break rest of the

ties foruji arbitrarily. We claim that the pro�le obtained a�ains a unique stable matching.

In any stable matching, agents in set σv
′

i are paired in a way that they are matched to

their top preference. At this stage, exactly one vertex agent is unmatched from each

color class, and this vertex is a part of S. For each such agent uji, the topmost unmatched

agent from its preference list is the sji, and uji is at the top position for sji. Hence, in

any stable matching, uji is matched to sji. A�er matching all the vertex agents and sji,

a unique stable matching is forced amongst remaining n − 1 vertex agents. We match

agent (sj+1
i , sj+2

i ) and continue matching the successive pair of agents until all selector

agents from a given color class are matched (note that we consider the indices modulo

n). �e described matching is the unique stable matching for the instance.

Reverse direction. Given a pro�le with a unique stable matching, we will construct a

MCIS. We’ll �rst show the following lemma.

Lemma 16. In the stable matching obtained in the reverse direction, there exist at least one

selector agent per color class, which is matched to the corresponding vertex agent.

Proof. (Proof by contradiction) Since no selector agents are matched to the corresponding

vertex agent in color class i, all the selector agents are either matched to other selector

agent from color class i or to an agent who lies below the third position in its preference

list. Since there is an odd number of selectors, we cannot match them among them-

selves. Let sji be one such agent which is not matched to agent from same color class.

Consider the pair (sji, s
j+1
i ), since sj+1

i is not matched to uj+1
i (as no agent is matched

to corresponding vertex agent) and sji, this is a blocking pair for the current matching,

which is a contradiction. Hence, in order to match every agent in Si to one of its top

three preferences, we must match at least one sji to uji.

Using the above lemma, we obtain a k − sized set S ′ of agents vertex agents consists

of one vertex from each color class such that the agent is matched to the selector agent

(if there are more than one agents matched to selector agents, we choose arbitrarily).

It is easy to see that for all u, v ∈ S ′, u is not adjacent to v. Otherwise, (u, v) will

form a blocking pair, since they prefer each other over selector agents. Hence, we have

recovered the required Multi-colored Independent set. �is completes the proof of equiv-

alence.

6.3.2 Extension to a special preference pro�le

We now show a restricted case of preference extension where the pro�le extended to

complete strict orderings admits a unique stable matching, and additionally satisfy the

property that for every matching pair, the agents are matched to their top choices. We

show an e�cient algorithm to check if such a pro�le exists for the given instance and,

in the positive case, �nd one such pro�le.
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94 Chapter 6. Extension Problems in Stable Matching

Lemma 17. �ere exist an e�cient algorithm for the problem of �nding an extension for

a given SMTI instance, such that the obtained instance admits a unique stable matching

where every agent is matched to its top preferences.

Proof. Our algorithm is a simple application of maximum matching algorithm in bipar-

tite graphs. Let the set of agents be A : M ∪ W, and an input pro�le P. For each

mi ∈ M, wmi
be the set of women missing from m ′is partial order. Similarly, we de-

�ne mwi for wi ∈ W. For each mi ∈ M (wi ∈ W), we add wmi
(mwi) to the set of

most preferred agents (i.e. the �rst equivalence class) in the preference list of mi (wi)

respectively. We denote the obtained pro�le by P ′.

Next, we construct a bipartite graph with the set of men and women as the two partitions.

We add an edge between (mi,wj) i� they mi,wj are present in the �rst equivalence

class of each other according toP ′. At this stage, we run an algorithm to �nd a maximum

matching in this graph. If we obtain a perfect matching, we place the matching partners

as a unique top choice for each other and resolve the remaining ties arbitrarily. It is easy

to see that the pro�le obtained using this procedure is a valid pro�le for the extension

problem with all required properties. If the graph does not admit a perfect matching, we

return NO (i.e. there does not exist any extension which has the required properties).

Correctness. We observe that whenever there exists an extension to a pro�le with com-

plete ordering with the given property that the agents are matched to their top pref-

erences, this matching must be present in the constructed bipartite graph. Hence the

maximum matching algorithm will return the required matching. Also, whenever the

algorithm returns a perfect matching, the preference pro�le constructed using the pro-

cedure described above has all the required properties.

�ough we show the result for the stable marriage case, it is easy to see that the approach

can be easily extended to Stable Roommates problem where we will invoke the algorithm

for maximum matching in general graphs.

6.3.3 Extension to 1D-Euclidean Pro�les

Next we consider a slight general version of the unique extension problem. We now ask

for an extension of given SMTI instance to an instance with complete strict orderings

where the resultant pro�le is 1D Euclidean. Note that it has been shown () that the pro-

�les with 1D Euclidean preferences admit a unique stable matching. We show hardness

for detecting such extension and present a sharp contrast with the previous case of an

e�cient algorithm for a slight generalization of the problem.

�eorem 22. �e problem of extension of incomplete partial orderings to a pro�le with

complete orderings which belong to 1D Euclidean domain is NP-hard.

Proof. We show a reduction from Betweenness. �e problem is known to be hard from

(Opa79). Given a ground set S = {s1, s2, . . . , sn} and a set of triples T over S; we have

to decide whether it is possible to derive an order σ over the elements of S such that for
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each triple (si, sj, sk) ∈ T either si � sj � sk or sk � sj � si holds.

For each triple ti : (si, sj, sk) ∈ T , we introduce two men t1i , t
2
i with preferences,

t1i : si � sj � sk

t2i : sk � sj � si
For all si ∈ S, we introduce a woman si with all tji for i ∈

[
|T |
]
, j ∈ {1, 2}. �is partial

pro�le is given as input to the extension problem. �is completes our construction.

Forward direction. Given an ordering σ over S, let σ be the 1D euclidean axis over the

set of women for preference pro�le for the extension instance. We complete the partial

ordering of each agent to a complete ordering according to σ. Note that it is always

possible to do that for all t1i and t2i since σ either has si � sj � sk or sk � sj � si. Let

σ ′ : t1 � t2 � . . . � t|T |. We extend the preferences of all women to strict ordering

according σ ′. �is is a valid extension of given partial ordering to a complete strict

ordering such that the pro�le is 1D-Euclidean.

Reverse direction. Let P be the 1D-Euclidean pro�le with strict complete orderings. It is

known that given a pro�le, one can e�ciently check if it is 1D Euclidean and �nd the

corresponding axis (Kno10). We run this algorithm on men’s preferences to obtain an

axis σ over women (i.e. an ordering over set S). Since σ is coherent with the partial

ordering of men, the strict order constructed along the axis (i.e. the order where the

le�-most agent on axis appears at the top and rightmost agent appears at the bo�om)

trivially satis�es either si � sj � sk or sk � sj � si. Hence we obtain the required

ordering for Betweenness.

�is completes the proof of equivalence. Note that the problem is hard even for the

Stable Marriage case.
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Part III

Fair Division
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Chapter 7

Connected Fair Division on a Path

with Envyfreeness

7.1 Introduction

We refer the reader to subsection 1.1.3 for a gentle introduction to fair division. In this

work, we consider connected fair division of goods on a path. We consider the model

where we have n agents and m goods, such that the agents have distinct valuations

(di�erent preferences) for the goods, and the valuations are binary where each agent

either approve a good or disapprove it. In this Chapter, we study Envyfree allocations

along with other desirable properties.

Consider a team of researchers as agents, and time slots on a shared high-performance

computer as goods. Every researcher has its preferences of time slots. Consider an

allocation which allocated an agent a time slot for a certain time, followed by some

other researcher and then again, the time slot for some duration to the �rst researcher.

Clearly, such allocation will not be convenient for researchers at all who will rather

prefer a contiguous slot of access to the computer. Similarly, if the agents are nations,

and resource is a coastal area of a sea. Again, in this case, each country would prefer a

contiguous piece of land (CDP13). Hence, it is essential to obtain a contiguous allocation

for certain applications.

In the context of fair division, only considering fairness notions such as Envyfreeness or

Equitability might not always be a prudent model. Since o�en, there exists an easy way

to achieve these with trivial allocations. Consider an example of empty allocation, such

an allocation is both Envyfree and Equitable but not meaningful. Hence, we complement

fairness properties with e�ciency notions. Completeness, Proportionality, and Pareto

Optimality are widely used e�ciency notions in the fair division. Completeness sim-

ply means allocating all the goods amongst the agents in the instance. Proportionality

demands each agent to get an allocation, which is at least
1
n

fraction of goods accord-

ing to its utility in the instance. At last, Pareto Optimality implies the non-existence

of allocations in which every agent gets at least as much utility as in current alloca-

tion, and there exists at least one agent for which the utility is strictly higher. For the

following study, we consider Envyfreeness along with Completeness, Pareto Optimality

and Non-wastefulness (where Non-wastefulness implies allocations such every agent
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receives only those goods which it values). We study the problems of existence and

computation of these allocations.

In Chapter 8, we consider same set of questions with Equitability as our fairness notion.

7.1.1 Summary of Results

Restrictions ↓ Existence Computation

EF1 + Comp EF1 + PO EF1 + NW EF1 + Comp EF1 + PO EF1 + NW

Binary

Yes

(�eorem 24)

No

(Prop. 5)

No

(Example 2)

?

NP-hard

(Prop. 5)

NP-hard

(�eorem 25)

Binary interval

Yes

(�eorem 24)

No

(Prop. 5)

No

(Exmample 2)

? ? ?

Binary k-interval

Yes

(�eorem 29)

Yes

(�eorem 29)

Yes

(�eorem 29)

P

(�eorem 29)

P

(�eorem 29)

P

(�eorem 29)

Binary extremal

Yes

(�eorem 28)

Yes

(�eorem 28)

Yes

(�eorem 28)

P

(�eorem 28)

P

(�eorem 28)

P

(�eorem 28)

Binary

le�-extremal

Yes

(�eorem 27)

Yes

(�eorem 27)

Yes

(�eorem 27)

P

(�eorem 27)

P

(�eorem 27)

P

(�eorem 27)

Table 7.1: Summary of results for Connected Fair Division EF1. For every fair-

ness/e�ciency requirement (columns) and preference restriction (rows), the entries in

the Existence section pertain to answers to the question “Does a desired allocation always

exist?” and those in the Computation section pertain to the computational complexity

of determining whether a desired allocation exists. �e entries marked with P pertain to

polynomial-time algorithms that also return the desired allocation (whenever it exists).

7.2 Preliminaries

We will follow the notation used by (BCE
+

17) and (BCF
+

19).

�e Model. Let [n] = {1, 2, . . . ,n} be a set of n ∈ N agents, and G = (V ,E) be an

undirected graph. Each vertex v ∈ V of the graph G corresponds to a good (or an item)

withm := |V | goods overall. A set of goods S ⊆ V is said to be connected if it induces a

connected subgraph of G. We let C(V) ⊆ 2V denote the set of all connected subsets of

V . Each S ∈ C(V) is called a (connected) bundle.

A (connected) allocation A : [n] → C(V) assigns to each agent i ∈ [n] a connected

bundleA(i) ∈ C(V) such that no good is assigned to more than one agent. For simplicity,

we denote an allocation as an ordered tuple A = (A1,A2, . . . ,An), where Ai := A(i).

�e preferences of agent i ∈ [n] over the connected bundles are speci�ed by a valuation

function ui : C(V)→ N ∪ {0}. We will assume that the valuation functions are additive,

i.e., for each i ∈ [n] and each S ∈ C(V), ui(S) :=
∑
v∈S ui({v}), where ui(∅) := 0. An

n-tuple of valuation functions U = {u1, . . . ,un} is called a valuation pro�le. We will

extensively focus on binary valuations, where for every good v ∈ V and every agent

i ∈ [n], we have ui({v}) ∈ {0, 1}.
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Unless stated otherwise, the graphG = (V ,E) will be assumed to be a path. In this case,

we will denote the set of goods (or vertices) by {1, 2, . . . ,m}, where {j, j + 1} ∈ E for

every j ∈ [m− 1]. For simplicity, we will write ui,j instead of ui({j}).

De�nition 15 (Connected Fair Division). An instance of the Connected Fair Divi-

sion problem is denoted by the tuple I = 〈G, [n],U〉. �e goal is to determine whether I

admits a connected allocation satisfying the desired fairness notion. In this work, we will fo-

cus on two notions of fairness: Envy-freeness (16) and equitability (19). Fairness notions are

o�en coupled with e�ciency (otherwise, an empty allocation also counts as “fair”), and we

will consider three such notions: completeness, Pareto optimality, and non-wastefulness

(17).

Notice that if G is a clique, then Connected Fair Division becomes equivalent to the

standard fair division problem with indivisible items without the connectedness con-

straint.

De�nition 16 (Envy-freeness and its Relaxations). An allocationA = (A1,A2, . . . ,An)
is said to be (a) envy-free (EF) if for any pair of agents i,k ∈ [n], we have ui(Ai) >
ui(Ak); (b) ε-envy-free (ε-EF) if for any pair of agents i,k ∈ [n], we have ui(Ai) >
ui(Ak)− ε; (c) envy-free up to one good (EF1) if for any pair of agents i,k ∈ [n], either

ui(Ai) > ui(Ak) or there exists some good v ∈ Ak such that ui(Ai) > ui(Ak \ {v});
and (d) (c) envy-free up to one outer good (EF1-out) if for any pair of agents i,k ∈ [n],
either ui(Ai) > ui(Ak) or there exists some good v ∈ Ak such that Ak \ {v} is connected

and ui(Ai) > ui(Ak \ {v}).

It follows from the de�nitions that EFo1 ⇒ EF1. �e notions of EF1 and EFo1 are due

to (Bud11) and (BCF
+

19) respectively.

De�nition 17 (E�ciency Notions). A (connected) allocation A = (A1,A2, . . . ,An) is

(a) complete (Comp) if no good is le� unallocated by A, i.e., for any good v, there exists

some agent i ∈ [n] such that v ∈ Ai; (b) Pareto optimal (PO) if for no other connected

allocation B, we have ui(Bi) > ui(Ai) for every agent i ∈ [n], with the inequality being

strict for at least one agent; and (c) non-wasteful (NW) if it is complete and each good is

assigned to an agent that has a non-zero value for it, i.e., for any good v, there exists some

agent i ∈ [n] such that v ∈ Ai and ui({v}) > 0.

An allocation that is not complete is called a partial allocation. A non-wasteful allocation

is, by de�nition, complete. A Pareto optimal allocation is, without loss of generality,

also complete.
1

In general, non-wastefulness and Pareto optimality are incomparable

notions, even when G is a path.
2

However, for binary valuations, NW⇒ PO⇒ Comp.

De�nition 18 (Preference Restrictions). We study various preference restrictions for the

special case of Connected Fair Division when G is a path.
3

Recall that in this se�ing,

1
�is is because a partial allocation that is PO can be extended to a complete and PO allocation.

2
Indeed, imagine three goods v1, v2, v3 on a path and two agents {1, 2} whose valuations are u1,1 = 1,

u1,2 = 10, u1,3 = 0, u2,1 = 10, u2,2 = 1, and u2,3 = 1. �e allocation A := ({v1}, {v2, v3}) is non-

wasteful, but is Pareto dominated by the allocation B := ({v2, v3}, {v1}). Also, B is Pareto optimal but not

non-wasteful because it assigns v3 to agent 1.

3
Some of these preference restrictions are inspired from similar assumptions in the theory of voting

(EL15).
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the goods are indexed from le� to right by 1, 2, . . . ,m. We say that the valuation functions

are (a) binary if for each agent i ∈ [n] and each good j ∈ [m], ui,j ∈ {0, 1}; (b) binary
interval if for each agent i ∈ [n], there exist `i ∈ [m] and ri ∈ [m] (with `i 6 ri)

such that ui,j = 1 for all j ∈ {`i, `i+1, . . . , ri} and 0 otherwise; (c) binary k-interval
if the valuations are binary interval and each agent values exactly k goods; (d) binary
le�-extremal if for each agent i ∈ [n], there exists `i ∈ [m] such that ui,j = 1 for

all j ∈ {1, . . . , `i} and 0 otherwise; and (e) binary extremal if for each agent i ∈ [n],
there exist Li,Ri ⊆ [m] such that (1) Li is either empty or there exists `i ∈ [m] such that

Li = {1, . . . , `i}, (2) Ri is either empty or there exists ri ∈ [m] (with `i 6 ri) such that

Ri = {ri, . . . ,m}, and (3) ui,j = 1 for all j ∈ Li ∪ Ri and 0 otherwise.

We will assume, without loss of generality, that each agent has non-zero valuation for

at least one good, and that each good is valued by at least one agent.

Organization of the Chapter.

B Existence: In Section 7.4, we discuss about the existence of EF1 allocations with

various e�ciency guarantees. We show that EF1+complete allocations always ex-

ists (Section 7.4.1). For EF1+PO we point to a counter example by (IP19), and for

EF1+NW we show a counter example (Section 7.4.3).

B Hardness Results: In Section 7.5, we show hardness for checking existence of

EF1+NW allocations, and for EF1+complete on a collection of paths.

B Restricted Domains: In Section 7.6, we show polynomial time algorithms for

computing EQ1+NW allocations for Binary le�-extremal, Binary extremal, and Bi-

nary k-interval valuations. We also show that a similar set of result holds for

EF1+PO using an implication that for extremal and �xed length interval valua-

tions, EF1+PO =⇒ EF1+NW.

7.3 Results for E�ciency Notions

In this section, we show hardness for �nding the existence of Non-wasteful allocations,

even without considering any fairness notion. Later in section 7.6 we show that �nding

a Non-wasteful EF1 allocation for special restrictions on valuations does admit e�cient

algorithms.

�eorem 23. Determining the existence of a connected non-wasteful allocation (NW) is

NP-complete even when G is a path and the valuations are binary.

Proof. Our construction is similar to the one used by (BCL18) in the context of analyz-

ing connected fair division for chores. Speci�cally, we will show a reduction from the

NP-complete problem 2P2N-3-SAT, which is a restriction of 3-SAT where each variable

occurs four times, twice as a positive literal and twice as a negative literal (BKS04). An in-

stance of 2P2N-3-SAT consists of s boolean variables x1, . . . , xs and t clauses c1, . . . , ct.
Each variable xi is associated with two positive and two negative literals x1i , x

2
i , and

x1i , x
2
i respectively, numbered according to the order of appearance of xi in the clauses.

Notice that 3t = 4s.
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Given an instance of 2P2N-3-SAT, we construct a fair division instance as follows: �ere

are t+ 5s goods, consisting of t clause goods c1, . . . , ct; s dummy goods d1, . . . ,ds, and

4s literal goods ∪si=1{x
1
i , x

2
i , x

1
i , x

2
i}. �e graph G = (V ,E) is a path de�ned as follows

(see 7.1):

V := {c1, . . . , ct} ∪ {x1i , x
2
i ,di, x

1
i , x

2
i}
s
i=1, and

E := {∪t−1
i=1(ci, ci+1)}∪{(ct, x11)}∪{∪si=1(x

1
i , x

2
i)∪(x2i ,di)∪(di, x1i)∪(x1i , x2i)}∪{∪s−1

i=1(x
2
i , x

1
i+1)}.

c1 . . . ct x11 x21 d1 x11 x21 x12 x22 d2 . . . x1s x2s

Figure 7.1: �e path G constructed in the proof of �eorem 23.

�ere are 6s agents, consisting of 4s literal agents {z1i , z
2
i , z

1
i , z

2
i}
s
i=1; s variable agents

y1, . . . ,ys, and s dummy agents w1, . . . ,ws.

�e preferences of the agents are de�ned as follows: Each dummy agentwi approves all

s dummy goods d1, . . . ,ds. For every i ∈ {1, . . . , s} and k ∈ {1, 2}, the literal agent zki
(respectively, zki ) approves two goods, namely the literal good xki (respectively, xki ) and

the unique clause good cj such that xki ∈ cj (respectively, xki ∈ cj). Each variable agent

yi (corresponding to the variable xi) approves four literal goods x1i , x
2
i , x

1
i , x

2
i . All other

valuations are set to zero.

(⇒) Suppose there exists a truth assignment for the 2P2N-3-SAT instance. �en, the

desired allocation can be constructed as follows: Assign each dummy good di to the

corresponding dummy agent wi. For each i ∈ {1, . . . , s}, if the variable xi is true, then

assign the literal goods x1i , x
2
i to the variable agent yi, and the other two literal goods

x1i , x
2
i to the corresponding literal agents z1i , z

2
i . Otherwise, if xi is false, then assign

x1i , x
2
i to yi, and x1i , x

2
i to z1i , z

2
i . Finally, for each j ∈ {1, . . . , t}, if clause cj is such that

cj = `1 ∨ `2 ∨ `3, then assign the clause good cj to (any one of) `k if `k is true. Notice

that the above allocation assigns each good to an agent that approves it, and is therefore

non-wasteful. Furthermore, if a literal agent zki (or zki ) gets a clause good, then it does

not get any of the literal goods. �erefore, the allocation is also connected.

(⇐) Now suppose that there exists a connected and non-wasteful allocation A. No-

tice that A must assign each dummy good to one of the dummy agents (due to non-

wastefulness), and no two dummy goods can be assigned to the same dummy agent

(otherwise, due to connectedness, all intermediate goods will also be assigned to the

dummy agent, thus violating non-wastefulness). �erefore, without loss of generality,

A assigns the dummy good di to wi. Next, observe that if for some i ∈ {1, . . . , s} and

some k,k ′ ∈ {1, 2}, A assigns clause goods to both zki and zk
′

i , then the corresponding

literal goods xki and xk
′

i —lying on either side of the dummy good di—will need to be

assigned to the variable agent yi, thus violating connectedness. �erefore, if a clause

good is assigned to a literal agent zki (respectively, zki ) for some k ∈ {1, 2}, then neither

z1i nor z2i (respectively, neither z1i nor z2i) is assigned any clause good. In other words,

the assignment of clause goods cannot simultaneously trigger a positive and a negative

literal associated with any variable. We can now infer the following truth assignment:
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For every i ∈ {1, . . . , s}, set xi to be true if either z1i or z2i is assigned a clause good, and

false otherwise.

7.4 Existence of EF1 allocations

7.4.1 EF1 and Completeness

For the case of two agents and G = path, (SHS18) show, via a discrete version of the

“moving knife” procedure, that a connected allocation that is EF1 and Complete (but

possibly wasteful) always exists and can be e�ciently computed.

Proposition 3. [(SHS18); �eorem 4.1]EFoneTwoagents When there are n = 2 agents and

G is a path, there always exists a connected allocation that is envy-free up to one good (EF1)
and complete (Comp). Moreover, such an allocation can be computed in polynomial time.

(Suk19) proves a similar result for a general number of agents but with a weaker fairness

guarantee (2umax-EF instead of EF1). Unlike Proposition 3, this result does not provide

an e�cient algorithm for �nding the corresponding allocation.

Proposition 4. [(Suk19)]EFmargNagents When G is a path, there always exists a con-

nected and complete allocation such that agent i has envy at most 2ui,max towards any

other agent, where ui,max := maxj∈[m] ui,j. In particular, there exists a connected 2umax-

EF and complete allocation, where umax := maxi∈[n] ui,max.

Derived Cake-cutting Instance When G is path, we will o�en �nd it convenient

to reduce a discrete instance I of Connected Fair Division to its continuous ana-

logue, which we call a derived cake-cu�ing instance ID. �e derived instance ID =
〈[0,m], [n],UD〉 consists of a divisible resource (or a cake) denoted by [0,m], the same

set of n agents, and a set of derived valuation functions over [0,m] de�ned as follows:

If ui,j = b in I, then ui([j − 1, j]) = b in ID. �at is, agent i values good j in I at b if

and only if it has a piecewise constant valuation of b for the interval [j − 1, j] in ID. A

connected allocation in ID refers to a division of [0,m] into n contiguous subintervals,

one for each agent.

�e proof of proposition 4 by (Suk19) is via reduction to cake cu�ing. Brie�y, consider the

derived cake-cu�ing instance ID for the given instance I of Connected Fair Division.

It is known that for piecewise constant valuations, a connected, envy-free and complete

allocation of a cake always exists (Su99). Such an allocation (say, A) in ID could, in

general, correspond to a fractional allocation of the goods in I and must therefore be

rounded. �e rounding scheme in (Suk19) assigns good j to agent i if the integral point

j is assigned to agent i by the allocationA in ID. In this process, an agent could lose out

on a good j at the right extreme of its fractional allocation (even when it is assigned the

interval [j− 1, j) in ID but not the right extreme point {j}). Similarly, some other agent

could get a good j at its le� extreme (simply by having the point {j} allocated to it in ID).

�us, the rounded allocation need not be envy-free. However, the envy experienced by

agent i is bounded by less than or equal to 2ui,max. In lemma 18, we describe a di�erent

rounding scheme that strengthens the envy bound in proposition 4 from a weak to a

strict inequality.
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Lemma 18 (Rounding scheme). LetA be a connected, complete and envy-free allocation

in the derived cake-cu�ing instance ID. �en, one can compute in polynomial time an inte-

gral allocation A ′ in the original instance I that is connected and complete such that agent

i has envy strictly less than 2ui,max towards any other agent, where ui,max := maxj∈V ui,j.

Proof. Given a (possibly fractional) allocation A, we can compute an integral allocation

A ′ via the following rounding scheme: Each fractional cut is rounded to its nearest

integer value, with the additional condition that for any integer p, a cut at p + 0.5 is

consistently rounded either to p or to p+ 1.

It is easy to see that A ′ is connected and complete in I. To see why the envy guarantee

holds, note that under the rounding step, an agent could “gain” at most 0.5 fraction of an

interval to its right and at most 0.5 fraction of an interval to its le�, with at least one of

the gains being strictly less than 0.5. A similar observation holds for an agent losing its

extreme goods. �erefore, the envy of agent i towards any other agent must be strictly

less than twice its maximum value for any good (namely, 2ui,max), as desired.

When instantiated for binary valuations, Suksompong’s proof of Proposition 4 shows

the existence of a 2-EF allocation. Lemma 18 helps us improve the fairness guarantee

from 2-EF to EF1 �eorem 24.

�eorem 24 (Existence of EF1 for binary valuations). Given a Connected Fair

Division instance whereG is a path and valuations are binary, a connected allocation that

is envy-free up to one good (EF1) and complete (Comp) always exists.

Proof. As mentioned above, our proof is similar to that of (Suk19) in that we also perform

a reduction to cake cu�ing followed by a rounding step. �e existence of a connected,

complete and envy-free allocation (say, A) in the derived cake-cu�ing instance is guar-

anteed by a result of (Su99). Such a division of the cake could, in general, correspond

to a fractional allocation of the goods in the Connected Fair Division instance I. By

using the rounding scheme of lemma 18, we obtain a connected and complete allocation

(say, A ′) in which agent i has envy strictly less than 2ui,max towards any other agent.

For binary valuations, ui,max = 1; thus ui(A
′
k) − ui(A

′
i) < 2 for any i,k ∈ [n]. By

integrality of valuations, this implies that ui(A
′
k) − ui(A

′
i) 6 1. Hence, the rounded

allocation is 1-EF. �e claim now follows by observing that for binary valuations, an

allocation is 1-EF if and only if it is EF1.

7.4.2 EF1 and Pareto Optimality

(IP19) study the problem of �nding a connected allocation of a graph under the Pareto op-

timality (PO) constraint. One of their results is that an allocation that is simultaneously

EF1 and PO allocation need not exist when G is a path, and �nding one can be com-

putationally hard. �e non-existence result of (IP19) is in stark contrast to the se�ing

where G is a clique (i.e., the standard model of fair division without the connectedness

constraints), where an EF1 and PO allocation is guaranteed to exist (CKM
+

16).

Proposition 5. [IP19] WhenG is a path, there need not exist a connected allocation that is

both EF1 and PO, even for binary valuations. Moreover, it is NP-hard to determine if such

an allocation exists, even for binary valuations.
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7.4.3 EF1 and Non-Wastefulness

Example 2 (Non-existence of EF1 and NW with binary interval valuations).

When G is a path, there need not exist a connected allocation that is both EF1 and NW,

even for binary interval valuations, as the following example demonstrates: Consider a

Connected Fair Division instance with n = 2 agents and m goods g1, . . . ,gm on a

path G = (V ,E) such that (gi,gi+1) ∈ E for every i ∈ [m− 1]. Agent 1 values all them

goods at 1. Agent 2 values g2, . . . ,gm−1 (i.e., all but the extreme goods) at 1 and the rest at

0. Any non-wasteful allocation must assign the extreme goods to agent 1. By connectedness,

all the intermediate goods must also be assigned to agent 1, resulting in arbitrarily large

envy from agent 2.

7.5 Hardness Result for Envyfreeness

7.5.1 EF1 and Non-wasteful Allocation

We now present a hardness for determining the existence of non-wasteful EF1 alloca-

tions on a path.

�eorem25. WhenG is a path, it isNP-hard to determine whether there exists a connected

allocation that is both EF1 and NW, even for binary valuations.

Proof. Our reduction is similar to the reduction by (IP19) (�eorem 3). We show the

reduction from Exact-3-Cover (X3C). Let X = {x1, x2, . . . , x3r} be the universal set, S

be the set of 3-element subsets of X and |S| = s. �e given instance is ’YES’ instance of

X3C if and only if there exist a set S ′ ⊆ S s.t. |S ′| = r and ∪S∈S ′S = X. Consider an

instance (X, S) of X3C. For each S ∈ S we denote three elements in S by (x1S, x
2
S, x

3
S).

We construct following instance I of CFD using this.

Goods: For each Si ∈ S we introduce three goods x1Si , x
2
Si
, x3Si (denoted by xSi) cor-

responding to three elements in the set and for each k ∈ [r], we introduce set of three

goods (d1k,d
2
k,d

3
k) (We will call these two types of three good chunks as xSi and dk).

Apart from this we introduce s+ r− 1 separator goods t ′is.

Agents: For each Si ∈ S ′ we create an agent iSi who only approves the goods

x1Si , x
2
Si
, x3Si , and each dhk for k ∈ [r] and h ∈ [3]; for every x ∈ X we create an agent ix

which only approves xhS such that xhS = x. We also introduce s+ r− 1 separator agents

it each of which approve a unique separator good.

xS1 t1 xS2 t2 ts−1 xSs ts d1 ts+1 t dr

Figure 7.2: Sequence of goods on path for �eorem 25

Note that by construction, every agent iS can get at most three goods; every agent ix
can get at most one good and every agent it can get at most one good in any connected

allocation.

Forward direction: Let the set S ′ ⊆ S be the exact cover of X (|S ′| = r).
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B Each agent iS such that S ∈ S ′, we allocate one of d1k,d
2
k,d

3
k arbitrarily for k ∈ [r].

B Each agent iSi (s.t. S ∈ S \ S ′) we allocate each one of them the set of three goods

x1Si , x
2
Si
, x3Si corresponding to set Si.

B Each agent ix is allocated the good xhS such that xhS = x

B Each agent ti is allocated the unique separator good it approves.

According to the construction it is easy to see that this is a complete, connected, EF1

allocation (since all agents get the maximum connected chunk that they can get).

Reverse direction: Consider that there exist a complete, connected, non-wasteful EF1

allocation. Notice that in any complete, non-wasteful allocation each separator good

has to go to a unique separator agent (since these goods are approved only by unique

agents). At this point we remain with s+r three good chunks corresponding to (xSi) and

(dk), and s unallocated agents iSi and 3r unallocated agents ix. Hence in any complete

allocation we must allocate three goods to each iS and one good to each ix in order to

follow the connectivity constraint according to construction.

Assume that the given instance (X, S) of X3C is a no instance. �is implies that |S ′| > r

such that S ′ ⊆ S and ∪S∈S ′S = X. Hence, for any complete allocation, a�er allocating

one good to each agent ix we remain with more than s − r + 1 partially or completely

unallocated sets of goods from xSi . �ese combined with r sets dk we have strictly more

than s distinct sets of partially or completely unallocated goods from xSi∪dk. We know

that each agent iSi can be allocated the goods from at most one of these set of goods.

Since we have at most s of these agents (iSi), by pigeon-hole argument, there will exist

some set of goods which are unallocated. �is is a contradiction to our assumption of

complete allocation.

�is completes the proof.

7.5.2 EF1 and complete allocation on a collection of Paths

�e existence of a complete-EF1 allocation is known for binary valuations on a path is

known is from �eorem 24. In this section, we show that if we relax the underlying

graph of goods to a collection of paths instead of one single path, the existence does not

hold anymore. An easy counter-example for existence is the case when the number of

agents in the instance is strictly less than the number of paths of goods. Such an instance

cannot admit complete-connected allocation. We next show that deciding the existence

of complete-EF1 allocations which are connected is hard.

�eorem 26. When G is a collection of paths, it is NP-hard to determine whether there

exist a connected allocation that is both complete and EF1, even for binary valuations.

Proof. We show the reduction from a variant of Exact-3-Cover (X3C) problem. X3C is

known to be hard even when each element in the universe appears exactly three times.

We will start from this bounded frequency variant of X3C. Let X = {x1, x2, . . . , x3r} be
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the universal set, S be the set of 3-element subsets of X and |S| = s = 3r (due to bounded

frequency). Consider an instance (X, S) be the X3C instance. Let S ′ be the set containing

two copies of all the sets S ∈ S. |S ′| = 6r and each element in the universe now appears

exactly six times. Notice that changing the set S with S ′ does not alter the fate of given

X3C instance. For each S ∈ S ′ we denote three elements in S by (xS1 , x
2
S, x

3
S). We

construct following instance I using this.

Goods: For each Si ∈ S ′ we introduce 3k goods with k (for k > 8r) copies of each

x1Si , x
2
Si
, x3Si (denoted by xSi) corresponding to three elements in the set.

Agents: For every x ∈ X we introduce an element agent ix which only approves k −
copies of xhS such xhS = x for h ∈ [3]. We also introduce |S ′| − r i.e. 5r dummy agents

which approves all the goods.

�is completes the construction of I ′. By construction, every agent can get at most 3k
goods.

Forward direction. Let S ′ ⊆ S ′ be the exact cover of X.

B Each agent ix is allocated a set of k goods such that S ∈ S ′ and xhS = x for h ∈ [3].

B Allocate each of the remaining 5r paths of 3k goods to one dummy agent each

arbitrarily.

As each dummy agent receives exactly 3k goods and at most k goods valued by any

agent ix, the allocation is complete, connected and EF1.

Reverse Direction. Let π be a complete, connected and EF1 allocation for I. Let a be the

maximum number of goods allocated to any dummy agent under π. Since π is EF1, all

the dummy agents either receive a or a− 1 goods and each ix can be allocated at most

a goods for some natural number a. Since the allocation is complete,

a >
6r× 3k

(5r+ 3r)
=⇒ a > 2k

�is implies that no two dummy agents can share a single connected piece of length 3k.

Let a < 3k. Such an allocation will create 5r partially allocated paths. As there are at

most 3r element agents, the partial allocation cannot be completed. Combining these

two facts, we get a = 3r. We now show that all dummy agents will be allocated an

entire connected piece of 3k goods. Assume this is not the case, di is allocated 3k − 1
goods under π. �e remaining good in the connected piece has to be allocated to an

element agent (say ix). Consider the following two cases:

B ix approves the allocated good: �is implies ix approves exactly k goods in from

the connected piece under consideration. k− 1 of these approved goods are allo-

cated to di, which contracts the assumption that π is EF1.

B ix does not approve the allocated good: Since k > 8r, there exist at least one

agent who receives more than one good approved by ix, and ix does not receive

any good it approved. We obtain a similar contradiction as in the previous case.
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Let S ⊆ S ′ be the subset of paths allocated among element agents ix. From the above

argument, it is clear that each ix should receive at least one good it approves. Hence, set

S contains at least one copy of each ix. As |S| = r, it contains exactly one copy of each

element. Hence, we can recover the required exact cover from any allocation π.

Notice that the above reduction also works for EF-k for any constant k ∈ N.

7.6 E�cient Algorithms for Restricted Preference Do-

mains

In this section, we show the existence and e�cient computation of Non-wasteful EF1

allocation for the case of restricted classes of valuations. We refer the reader to de�nition

18 to recall these classes.

7.6.1 An Algorithm for Binary Le�-Extremal Valuations

�is section presents an algorithm (Algorithm 2) for computing an envy-free up to one

good (EF1) and non-wasteful (NW) allocation for binary le�-extremal valuations.

Description of the algorithm: Recall that for binary le�-extremal valuations, each agent

i ∈ [n] is associated with a segment Li := {1, . . . , `i} such that ui,j = 1 for all j ∈ Li and

0 otherwise. Without loss of generality, reindex the agents such that `1 6 `2 . . . 6 `n,

or, equivalently, L1 ⊆ L2 . . . ⊆ Ln.

Algorithm 2 works in two phases. In Phase 1, the algorithm works with the derived

cake-cu�ing instance ID of the instance I. Recall that the derived instance comprises of

a divisible resource [0,m] over which the agents have piecewise constant valuations. At

iteration t of Phase 1, let Nt denote the set of currently available agents, and `ti denote

the length of segment of agent i over the currently available resource. For each agent

i ∈ Nt, let Nti := {k ∈ Nt : `tk 6 `ti} denote the set of currently available agents whose

segments (with respect to the currently available resource) are contained within that of

agent i. Additionally, let nti := |Nti |. �e algorithm computes the ratio αti := `ti/nti for

each agent i. Let it ∈ Argmini∈Nt α
t
i denote the agent with the smallest ratio (Line 8).

�e algorithm allocates part of the resource, namely [start, start+`tit ], by evenly dividing

it (in contiguous pieces) among the ntit agents in the set Ntit . �e agents in Ntit are

then removed from further consideration, and the algorithm re-enters Phase 1 with the

remaining agents Nt \ Ntit and the le�over resource [start + `tit ,m].

At the end of Phase 1, the algorithm has constructed an allocation A of the resource

[0,m] in the derived instance ID. Such an allocation could, in general, correspond to a

fractional allocation in I. �erefore, in Phase 2, the algorithm uses the rounding scheme

of lemma 18: Each fractional cut is rounded to its nearest integer value, with the addi-

tional condition that for any integer p, a cut at p+ 0.5 is consistently rounded either to

p or to p+ 1.
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Algorithm 2: Algorithm for binary le�-extremal valuations

Input: An instance I = 〈G, [n],U〉 with binary le�-extremal valuations and a path G.

Output: An allocation A.

1 A← {∅, ∅, . . . , ∅} . Initialize the current allocation
2 t← 0 . Initialize the iteration index
3 Nt ← [n] . Initialize the set of remaining agents
4 `ti ← `i for all i ∈ [n] . Initialize the lengths of segments
5 start← 0 . Initialize the starting point of the cake

. Phase 1: Compute fractional allocation of the derived cake
instance

6 while Nt 6= {∅} do
7 For each i ∈ Nt, compute Nti := {k ∈ Nt : `tk 6 `ti} and αti := `ti/nti , where

nti := |Nti |.

8 Pick it ∈ argmini∈Nt α
t
i . . Tie-break in favor of larger `ti

9 Divide the interval [start, start + `tit ] evenly into nit contiguous subintervals (of

width αtit each) and allocate them from le� to right to the agents in Ntit in

increasing order of `ti values. Update the partial allocation A accordingly.

10

11 start← start + `tit . Shift the starting point of the cake
12 Nt+1 ← Nt \ Ntit . Update the set of remaining agents
13 `t+1

i ← `ti − `
t
it

. Update the lengths of segments
14 t← t+ 1 . Update the iteration index

15 end

. Phase 2: Rounding Step

16 If A is fractional, then use the rounding scheme of Lemma 18.

17 return A

Lemma 19 describes a useful property of Algorithm 2: For any two consecutive iterations

t and t+ 1 of Phase 1, the smallest ratio at t is at most that at t+ 1, i.e., αtit 6 α
t+1
it+1

.

Lemma 19. Let t and t+1 denote any two consecutive iterations of Phase 1 of Algorithm 2.

�en, αtit 6 α
t+1
it+1

.

Proof. By the agent selection rule at iteration t, we have that αtit 6 αtit+1
. �at is,

`tit
ntit

6
`tit+1

ntit+1

. In particular, this implies that

`tit
ntit

6
`tit+1

−`tit
ntit+1

−ntit
. From the update rules in

Lines 12 and 13, we know that `t+1
it+1

= `tit+1
− `tit and nt+1

it+1
= ntit+1

− ntit . �erefore,

αtit =
`tit
ntit

6
`tit+1

− `tit
ntit+1

− ntit
=
`t+1
it+1

nt+1
it+1

= αt+1
it+1

,

as desired.

�eorem 27 (EF1 and NW for binary le�-extremal valuations). When G is a path

and the valuations are binary le�-extremal, there always exists a connected allocation that
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is both envy-free up to one good (EF1) and non-wasteful (NW). Moreover, such an alloca-

tion can be computed in polynomial time.

Proof. We will argue that given any instance I of Connected Fair Division where G

is path and the valuations are binary le�-extremal, Algorithm 2 always returns a con-

nected, EF1 and NW allocation for I in polynomial time.

Running time: Recall our assumption from Section 7.2 that each agent has non-zero val-

uation for at least one good. �us, for every i ∈ [n], `i > 1. �erefore, in each iteration

t of Phase 1, we have that Nti > 1. �e set of remaining agents must therefore shrink by

at least one a�er each iteration (i.e., |Nt+1| < |Nt|). Hence, Phase 1 can continue for at

most n iterations. Each individual iteration of Phase 1 runs in polynomial time. In addi-

tion, Phase 2 also runs in polynomial time (18). Overall, Algorithm 2 has a polynomial

running time.

Correctness: It is easy to verify that the allocation returned by Algorithm 2 is connected.

To see why the allocation is non-wasteful, recall that by our assumption from Section

7.2, each good is valued by at least one agent. In particular, this implies that `n = m, and

therefore the allocation is complete (Comp). Furthermore, in any iteration t of Phase 1,

we have αti > αtit for any agent i ∈ Ntit . �e allocation step in Line 9 of Algorithm 2

assigns pieces (of width αtit each) from le� to right in the order of `ti values. �erefore,

the piece assigned to agent i is within

αtit · n
t
i 6 α

t
i · nti =

`ti
nti
· nti = `ti ,

implying that agent i only gets a piece for which it has a non-zero valuation. �us, the

fractional allocation at the end of Phase 1 is non-wasteful. Finally, observe that rounding

scheme of Phase 2 preserves non-wastefulness, since each fractionally allocated good is

only contested among the agents that have a non-zero valuation for it. Overall, the

allocation returned by Algorithm 2 is non-wasteful (NW) with respect to the original

instance I.

We will now argue that the allocation returned by Algorithm 2 is envy-free up to one

good (EF1). Note that in light of 18, it su�ces to argue that the fractional allocation A

constructed at the end of Phase 1 is envy-free in the derived instance ID. Let j, j ′ ∈ [n]
be any two agents. If j and j ′ are assigned their respective pieces in the same iteration of

Phase 1, then, by the assignment step in Line 9, the pieces must be of equal width. Non-

wastefulness and binary valuations assumption together imply that uj(Aj) = uj(Aj ′ ),
which gives envy-freeness.

Next, assume, without loss of generality, that agent j is allocated a piece in an earlier

iteration of Phase 1 than agent j ′. Speci�cally, suppose the agents j and j ′ are allocated

a piece each by Algorithm 2 in the iterations t and t ′ respectively, where t < t ′. A�er

iteration t, any allocation made by the algorithm is to the right of `it , and therefore, to

the right of `j. �is means that agent j has zero value for the piece allocated to agent

j ′, and therefore does not envy j ′. Next, recall that the width of all pieces assigned in

iteration t is αtit . From 19, we have that αtit 6 αt
′

it ′
. �erefore, agent j ′ is allocated a

piece that is at least as large as that of agent j. Along with binary le�-extremal valuations

assumption, this means that uj ′(Aj ′) > uj ′(Aj), implying that j ′ does not envy agent j.

�is �nishes the proof of 27.
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112 Chapter 7. Connected Fair Division on a Path with Envyfreeness

�eorem 28 (EF1 and NW for binary extremal valuations). When G is a path and

the valuations are binary extremal, there always exists a connected allocation that is both

envy-free up to one good (EF1) and non-wasteful (NW). Moreover, such an allocation can

be computed in polynomial time.

�eorem 29 (EF1 and NW for binary k-interval valuations). When G is a path and

the valuations are binary k-interval, there always exists a connected allocation that is both

envy-free up to one good (EF1) and non-wasteful (NW). Moreover, such an allocation can

be computed in polynomial time.

We note that the basic idea of the algorithms for binary extremal and binary k-interval

valuations is similar to Algorithm 2, hence, we skip the description of the algorithm and

the proof of correctness.

112



Chapter 8

Connected Fair Division on a Path

with Equitability

8.1 Preliminaries and Known Results

We refer the reader to section 7.2 to recall the basic problem setup, and the de�nitions

of e�ciency notions (17) and preference restrictions (18).

De�nition 19 (Equitability and its Relaxations). An allocation A = (A1,A2, . . . ,An)
is said to be (a) equitable (EQ) if for any pair of agents i,k ∈ [n], we have ui(Ai) =
uk(Ak); (b) ε-equitable (ε-EQ) if for any pair of agents i,k ∈ [n], we have ui(Ai) >
uk(Ak)−ε; (c) equitable up to one good (EQ1) if for any pair of agents i,k ∈ [n], either

ui(Ai) > uk(Ak) or there exists some good v ∈ Ak such that ui(Ai) > uk(Ak \ {v});
and (d) equitable up to one outer good (EQo1) if for any pair of agents i,k ∈ [n], either

ui(Ai) > uk(Ak) or there exists some good v ∈ Ak such that Ak \ {v} is connected and

ui(Ai) > uk(Ak \ {v}).

Next, we de�ne a notion of (a,b)-sparse instances.

(a,b)-sparse instances: Given any 1 6 a 6 m and 1 6 b 6 n, we say that an instance

with binary valuations is (a,b)-sparse if each agent approves at most a goods and each

good is approved by at most b agents.

8.1.1 Known Results for Equitability

B Existence: For any ordering of the agents, there exists a connected EQ division

of a cake consistent with that ordering (CDP13). For one of these orderings, the

equitable allocation is also proportional (CDP13).

B For indivisible goods, an EQ allocation might fail to exist, but an EQx allocation

always exists and can be computed in polynomial time (GMT14).

B Computability: (CP12) �rst showed that no �nite protocol can �nd a connected

division that is simultaneously EQ and proportional. (PW17) showed that this im-

possibility holds even without the connectedness and proportionality constraints
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114 Chapter 8. Connected Fair Division on a Path with Equitability

(also see (Chè18)). �ough, an ε-equitable and connected division can be computed

by a �nite procedure (CP12).

B EQ and friends: An EQ+EF+PO division of a cake might not exist (BJK13). How-

ever, if we relax PO to completeness, then existence is guaranteed (DS61; Alo87),

although the pieces need not be contiguous. If we insist on contiguous pieces, then

an EQ division always exists (CDP13; AD15; Chè17) but an EQ+EF division might

fail to exist (BJK06). Note that a connected EQ and proportional division always

exists (CDP13).

Apart from these, (BCL18) and (Suk19) have studied equitability for connected alloca-

tions.

8.1.2 Our Contributions and Organization of the Chapter

Restrictions ↓ Existence Computation

EQ1 + Comp EQ1 + PO EQ1 + NW EQ1 + Comp EQ1 + PO EQ1 + NW

Binary

Yes

(�eorem 30)

No

(Example 3)

No

(Example 3)

P

(�eorem 31)

NP-hard

(�eorem 34)

NP-hard

(�eorem 32)

Binary interval

Yes

(�eorem 30)

No

(Example 3)

No

(Example 3)

P

(�eorem 31)

? ?

Binary k-interval

Yes

(�eorem 30)

No

(Example 4)

No

(�eorem 37)

P

(�eorem 31)

P

(�eorem 38)

P

(�eorem 37)

Binary extremal

Yes

(�eorem 30)

No

(Example 5)

No

(�eorem 36)

P

(�eorem 31)

P

(�eorem 39)

P

(�eorem 36)

Binary

le�-extremal

Yes

(�eorem 30)

No

(Example 5)

No

(�eorem 35)

P

(�eorem 31)

P

(�eorem 37)

P

(�eorem 35)

Table 8.1: Summary of results for Connected Fair Division-EQ1. For every fair-

ness/e�ciency requirement (columns) and preference restriction (rows), the entries in

the Existence section pertain to answers to the question “Does a desired allocation always

exist?” and those in the Computation section pertain to the computational complexity

of determining whether a desired allocation exists. �e entries marked with P pertain to

polynomial-time algorithms that also return the desired allocation (whenever it exists).

Organization of the Chapter.

B Algorithms: In Section 8.3, we present a polynomial time algorithm to compute

complete+EQ1 allocations for any ordering of agents �eorem 31. (CDP13) showed

a similar result in the contiguous se�ing, our result can be perceived as an analog

of their result in the discrete world.

B Hardness Results: In Section 8.4 we show hardness for checking existence of

EQ1+PO and EQ1+NW allocations. All of our results follow from a single con-

struction that also has implications for other fairness notions such as envy-freeness

up to one good (EF1) as well as negatively valued items (or chores).

B Restricted Domains: In Section 8.5 we show polynomial time algorithms for

computing EQ1+PO and EQ1+NW allocations for Binary le�-extremal, Binary ex-

tremal, and Binary k-interval valuations.
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8.2 Existence of EQ1 allocations

EQ1 and completeness. Cechlárová et al. in (CDP13) showed an existence of com-

plete EQ allocation of the cake for any ordering of the agents. Here, the ordering agents

signi�es the order in which of agents receive a bundle of connected goods from le� to

right on the path of goods according to �nal allocation. Similar to �eorem 24 for EF1

allocation, we give an existence result for connected complete EQ1 allocations as follows:

�eorem 30. Given a Connected Fair Division instance where G is a path and valua-

tions are binary, a connected allocation that is equitable up to one good (EQ1) and complete

(Comp) always exists.

Proof. (Sketch) We convert the discrete connected fair division instance to derived cake

cu�ing instance (we refer the reader to Section 7.2 for the de�nition and properties of

these instances). From the existence result (CDP13) we know there exist an EQ allocation

for any ordering of agents for this instance. We now invoke the Rounding Scheme from

lemma 18 in the way as described in the context of EQ1 allocations. Employing this

lemma, we get the desired existence of EQ1 allocations for the discrete connected fair

division instance for any binary valuations.

8.2.1 EQ1 and Pareto Optimality

When G is a path, there might not exist a connected allocation that is both EQ1 and PO

(or both EQ1 and NW), even for binary interval valuations.

Example 3. �e example due to Igarashi and Peters (IP19) for showing non-existence of

EF1 + PO on paths works.

1 2 3 4 5 6 7 8 9 10 11

:

:

a1,a2

b1

1 1 1 1 1 1 1 1 1 1 1

0 0 0 1 1 0 0 0 0 0 0

Figure 8.1: Non-existence of EQ1+ PO allocation even for interval valuations

In any EQ1+PO allocation (say π) at least one of a ′is get three goods that she approves on

the right side of goods {4, 5}. At this point, EQ1 implies b1 gets both the goods she approve.

It is easy to see that if both the a ′is are allocated on one side of the goods 5, 6 then the

allocation will be PO since at least one agent will get the utility of at most 3. Hence, a1

and a2 are allocated on either side of goods {4, 5}. At this stage, it is easy to see that there

cannot exist an EQ1 allocation which PO.

Note that similar argument works for showing non-existence of EQ1 + Non-Wasteful allo-

cations.
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Next, we show example for non-existence of EQ1+ PO and EQ1 + NW allocations for

extremal valuations.

Example 4. We show an example with 3 agents and k-interval valuations to show non-

existence of EQ1+PO (Figure 8.2).

1 2 3 4 5 6 7 8

:

:

a1,a2

b1

1 1 1 1 0 0 0 0

0 0 0 0 1 1 1 1

Figure 8.2: Non-existence of EQ1+ PO allocation even for k-interval valuations

Example 5. We show a small example with 2 agents and le� extremal valuations (Fig-

ure 8.3).

1 2 3 4

:

:

a1

b1

1 1 1 1

1 0 0 0

Figure 8.3: Non-existence of EQ1+ PO allocation even for extremal valuations

It is easy to see that any PO allocation will allocate agent a1 goods {2, 3, 4} and good {1}
to agent b1. �is is true even for NW. Hence, there cannot exist EQ1+PO or EQ1 + NW

allocation.

8.2.2 A few remarks

Remark 1. For the case with non-connected allocations, it is easy to see that the Non-

wastefulness and Pareto Optimality are equivalent conditions. �is does not hold when we

insist on connected allocations.

Proof by example with two agents A,B with exclusive valuations:

a1 − a2 − b1 − a3 − b2

Consider an allocation where agentA is allocated {a1,a2,b1,a3} and agentB is allocated

good b2. �is allocation is PO but not NW.

Remark 2. For the binary Non-wasteful case EQ =⇒ EF but EF 6=⇒ EQ.
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�e proof for the above remark is as follows: In EQ allocations with binary valuations,

every agent is allocated the equal number of goods that she likes. �e non-wastefulness

condition implies that no agent is allocated any good that she did not approve. Hence,

for any agent, all other agents can receive at the most same number of goods as she has

received from the set of goods valued by her. Hence the allocation is EF.

Consider an example with two agents A,B with exclusive valuation:

a1 − a2 − a3 − a4 − b1 − b2

�e allocation which assigns every agent, all the goods that she approves is EF but not

EQ.

8.3 E�cient Algorithms for Equitable Allocations

8.3.1 Algorithm for complete-EQ1 Allocations

In this section, we present an e�cient algorithm for �nding complete EQ1 allocation

for Connected Fair Division instance I. Our results a proves a stronger statement that

for any given ordering of agents σ, there exist a complete-EQ1 allocation which can

be computed in polynomial time. Here, by ordering of agents we mean the ordering

respected by the desired allocation in terms of allocating connected bundle of goods

from le� to right on a path. For the derived cake cu�ing instance, Cechlárová et al.

in (CDP13) showed an existence of complete EQ allocation but their result was non-

constructive. Our result can be perceived as a positive complement of this result in the

discrete world.

�eorem 31. �ere is a polynomial time algorithm that return a complete-EQ1 connected

allocation of a path for any ordering of agents for binary valuations.

Before describing the algorithm we �rst set up some notations. Let [α,β] denote the

connected of bundle of goods from good α to good β such that α < β. A connected fair

division instance I = 〈N, [α,β]〉 denote a sub-instance of original instance restricted on

agents from set N and goods from range α to β from the original instance. Note that the

valuations are projection of valuations in the original instance. m denotes the last good

on the path. We �rst give an intuitive description of the algorithm.

Our algorithm runs in two phases. We �x an arbitrary ordering of agents σ amongst

all possible n! orderings. Given σ, for ith round in Phase 1, we try to �nd a minimal

allocation which respects the �xed ordering of agents, and provides utility of i to every

agent. We repeat this until we reach the utility p for which we run out of goods before

we allocate the utility of p to every agent, according to the �xed ordering. We call p

the ‘critical utility’. Next, in Phase 2, we move along σ and try to allocate a bundle of

utility p to maximum number initial agents. We �nd such allocations until we reach an

agent q such that it is not possible to �nd an allocation which gives utility of p− 1 to all

remaining agents a�er q, if we allocate a bundle of utility p to q. We call q the ‘critical

agent’. At this stage, for all the remaining agents including q, we �nd an allocation with

utility p− 1 in reverse order of agents with respect to σ.
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We now turn to the formal description of the algorithm.

Description of the algorithm. Let σ be the �xed ordering of agents. Once σ is �xed, our

algorithms works in two phases. In Phase 1, we iteratively �nd out the maximum utility

p that any agent can have in the �nal allocation A. Let αti be the latest (earliest) good

from the le� for which ut([α
t−1
i +1,αti ]) = i. Let α0

i +1 = 1∀i that is in each iteration,

the starting point of allocation for the �rst agent according to σ is the �rst good on the

path. Intuitively, at each iteration i we check if every agent can be allocated a bundle

of goods with utility i. If we are able �nd such allocation and there are still some goods

remaining at the end, then we proceed to iteration i + 1. Note that in each iteration i,

the allocated bundle for every agent t is connected bundle of goods – [αt−1
i +1,αti ]. We

stop when we reach i = p for which it is not possible to allocate all agents the utility of p

(i.e. the goods are �nished before all agents can achieve desired utility) for an allocation

according to the order σ. We call such utility p a ‘critical utility’ see Fig. 8.4. �e aim of

the �rst phase is to �nd the critical utility p. We note that for every �xed value of utility,

phase 1 �nds a minimal allocation which respects σ and provides every agent with given

utility. �e utility p is the highest utility that any agent can have for a connected-EQ1

allocation which respects ordering σ.

In the second phase, initially we �x the utility to p. Let Nj denote the ordered set of

jth to nth agent according to σ. We start from �rst agent according to σ (say n1). We

temporarily allocate a bundle [1,α1
p] with utility p to agent one. For the modi�ed in-

stance I ′ = 〈N2, [α
1
p + 1,m]〉 we check if each agent can achieve utility of p− 1 with a

procedure used in Phase 1. If we can �nd such allocation we �x the allocation for agent

one, remove agent one and corresponding allocated goods to obtain a modi�ed instance.

We move onto the next agent according σ and repeat the procedure until we �nd agent

q such that for instance I ′′ = 〈Nq+1, [α
q
p+ 1,m]〉 does not admit allocation with utility

p− 1 for all agents in I ′. We call such q ‘critical agent’.

Once we �nd critical agent q, we go back to the instance I∗ = 〈Nq, [αq−1
p + 1,m]〉. Let

σ ′ be the ordering reverse of σ projected on agents from Nq. We start allocating agents

a connected bundle of utility q − 1 according to σ ′ from the last good (i.e. we allocate

by computing bundles from right to le� in a similar way as we did from le� to right).

Once we reach the last agent, we allocate her the connected bundle of all the remaining

goods.

�is concludes the description of our algorithm. It is clear that the algorithm runs in

polynomial time. Next we move onto the correctness.

Proof of correctness. We recall that p is the critical utility and q is the critical agent.

Lemma 20. �e allocation A returned by the algorithm is complete, and each agent re-

ceives an utility of p or p− 1.

Proof. From the description the algorithm the completeness of allocation follows since

we allocate all the remaining goods to agent the last agent at the end of Phase 2. For

the la�er part of the Lemma, consider the agents from a1 to aq−1 each of these agent

receives a bundle with utility p in A. Next, consider all agents from set Nq. We claim

that these agents gets a bundle of goods with utility p − 1 in A. We need to argue

that such allocation can be done without exhausting all the remaining goods. Consider

the instance I = 〈Nq, [αq−1
p + 1,m]〉. For this instance, we know that there exist an
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1 2 3 k i-1 i i+1 m-1 m

utility p− 1

a1 a2 aj an le�over goods

(a) iteration p− 1

1 2 3 k i-1 i i+1 m-1 m

utility p

a1 a2 aj an

(b) iteration p

Figure 8.4: Phase I: Critical utility

allocation which provide utility of p − 1 for each agent in set Nq since the algorithm

performed this check before allocating agent q− 1 a bundle with utility p. Consider the

following allocation A returned by the algorithm on instance I: We start according to

σ ′ and minimal allocation from the last good. For �rst |Nq| − 1 agents we allocate the

bundle of utility p − 1, the existence for such an allocation is clear since there is such

allocation for all agents in set Nj in I. Now we give rest of the goods to the last agent.

We claim that last agent has utility of p − 1. It is easy to see that the utility is at least

p−1 since instance I has an allocation which provides each agent in set Nq. To show the

upperbound consider contradiction that is the last agent (aq) has utility strictly greater

than p − 1. �en, in such an allocation q has utility of at least p, and all other agents

appearing a�er q has utility of p− 1 which contradicts the fact that q is a critical agent.

Hence, aq can have utility at most p− 1. �is completes the proof for the lemma.

Given Lemma 20 the proof for �eorem 31 is trivial.

8.4 Hardness Results

8.4.1 Existence of EQ1 and Non-Wasteful

In this section, we start with showing a hardness for deciding an existence of Non-

Wasteful EQ1 allocations. We recall that Non-Wasteful allocation implies completeness

by de�nition (Section 7.2).

We �rst describe the version of Satisfiability that we will reduce from. Our instance

consists of (4p+ q) clauses which we will typically denote as follows:

C = {A1,B1,A
′
1,B
′
1, · · · ,Ap,Bp,A′p,B′p} ∪ {C1, · · · ,Cq}
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We refer to the �rst 4p clauses as the core clauses, and the remaining clauses as the

auxiliary clauses. �e core clauses have two literals each, and also enjoy the following

structure:

∀i ∈ [p],Ai ∩ Bi = {xi} and A′i ∩ B′i = {xi}

We refer to the xi’s as the main variables and the remaining variables that appear among

the core clauses as shadow variables. �e shadow variables occur exactly once with

negative polarity among the core clauses. �erefore, using `(·) to denote the set of literals

occuring amongst a subset of clauses, we have:∣∣∣∣∣`
(
p⋃
i=1

{Ai,Bi,A
′
i,B
′
i}

)∣∣∣∣∣ = 6p.

�e auxiliary clauses have the property that they only contain the shadow variables,

which occur exactly once amongst them with positive polarity. Also, every auxiliary

clause contains exactly four literals. Note that this also implies, by a double-counting

argument, that q = p. We say that a collection of clauses is a chain if it has all the

properties described above. An instance of Linear Near-Exact Satisfiability (LNES)

is the following: given a set of clauses that constitute a chain, is there an assignment τ

of truth values to the variables such that exactly one literal in every core clause and two

literals in every auxiliary clause evaluate to true under τ?

For ease of discussion, given an assignment of truth values τ we o�en use the phrase

“τ satis�es a literal” to mean that the literal in question evaluates to true under τ. For

instance, the question from the previous paragraph seeks an assignment τ that satis-

�es exactly one literal in every core clause and two literals in every auxiliary clause.

We also refer to such an assignment a near-exact satisfying assignment. �e following

observation is a direct consequence of the de�nitions above.

Proposition 6. Let C be a collection of clauses that form a chain. For any assignment of

truth values τ, the main variables satisfy exactly two core clauses and the shadow variables

satisfy either one core clause or one auxiliary clause.

We �rst establish that LNES is NP-complete:

Lemma 21. Linear Near-Exact Satisfiability is NP-complete.

Proof. We reduce from (2/2/4)-SAT, which is the variant of Satisfiability where every

clause has four literals and every literal occurs exactly twice — in other words, every

variable occurs in exactly two clauses with positive polarity and in exactly two clauses

with negative polarity. �e question is if there exists an assignment τ of truth values to

the variables under which exactly two literals in every clause evaluate to true.

Let φ be a (2/2/4)-SAT instance over the variables V = {x1, . . . , xn} and clauses

C = {C1, . . . ,Cm}. For every variable xi, we introduce four new variables: pi, ri and

qi, si. We replace the two positive occurrences of xi with pi and ri, and the two negated

occurrences of xi with qi and si. We abuse notation and continue to use {C1, . . . ,Cm}
to denote the modi�ed clauses. Also, introduce the clauses:
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Ai = (xi,pi),Bi = (xi, ri),A
′
i = (xi,qi),B

′
i = (xi, si),

for all 1 6 i 6 n. Note that the collection of clauses described form a chain, as required.

We use ψ to refer to this formula. We now turn to the argument for equivalence.

In the forward direction, let τ be an assignment that sets exactly two literals of every

clause in φ to true. Consider the assignment ζ given by:

ζ(xi) = τ(xi), ζ(pi) = ζ(ri) = τ(xi); ζ(qi) = ζ(si) = 1− τ(xi),

for all 1 6 i 6 n. It is straightforward to verify that ζ satis�es exactly one literal in

every core clause and exactly two literals in every auxiliary clause.

In the reverse direction, let ζ be an assignment for the variables ofψ that satis�es exactly

one literal in every core clause and exactly two literals in every auxiliary clause. De�ne

τ as the restriction of ζ on the main variables. Let C be a clause in φ. To see that τ

satis�es exactly two literals of C, note that the following:

ζ(pi) = ζ(ri) = ζ(xi) = τ(xi); ζ(qi) = ζ(si) = 1− ζ(xi) = 1− τ(xi)

is forced by the requirement that ζ must satisfy exactly one literal in each core clause.

�erefore, if τ satis�es more or less than two literals of any clause C, then that behavior

will be re�ected exactly in the auxiliary clause corresponding to C, which would con-

tradict the assumed behavior of ζ. We make this explicit with an example for the sake of

exposition. Let C from φ be the clause (x1, x3, x6, x7), and let the clause constructed in

ψ be (p1,q3,q6, r7). Suppose τ(x1) = τ(x7) = τ(x6) = 1 and τ(x3) = 0. �en we have

ζ(p1) = ζ(r7) = 1 and ζ(q6) = 0, while ζ(q3) = 1. �is demonstrates that ζ satis�es

three literals in the auxiliary clause corresponding to C, in one-to-one correspondence

with the literals that were satis�ed by τ. �is completes our argument.

�eorem32. Determining the existence of a connected non-wasteful EQ1 allocation isNP-

complete even when G is a path and the valuations are binary, and every agent approves a

constant number of goods.

Proof. Let φ be an instance of LNES in standard notation. We introduce one good for

every core clause, denotedAi,Bi,A
′
i,B
′
i, and three goods for every auxiliary clause, de-

noted CLi ,Si,C
R
i . We also introduce 2p dummy goods denoted by D1,D

′
1, . . . ,Dp,D

′
p.

We introduce two agents for each main variable, which is useful to interpret as one

agent for every literal corresponding to the main variables. For a main variable xi, the

agent corresponding to the positive literal xi approves the goods Ai,Bi,Di,D
′
i, while

the agent corresponding to the negative literal xi approves the goods A′i,B
′
i,Di,D

′
i.

We also introduce an agent for every shadow variable. Ify is a shadow variable occurring

in the core clauseAi and auxiliary clauseCj, then the agent corresponding to y approves

the goods Ai,C
L
j and CRj . �e set of goods approved by y is analogously de�ned if the

core clause it appears in were to be Bi, A
′
i or B′i. Finally, we introduce q dummy agents

T1, . . . , Tq and have Ti approve Si for all i ∈ [q].
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�e goods appear in the following order:

A1,B1,A
′
1,B
′
1, · · · ,Ap,Bp,A′p,B′p,CL1 ,S1,CR1 , · · · ,CLq,Sq,CRq,D1,D

′
1, · · · ,Dp,D′p.

�is completes the description of the construction. We now turn to the proof of equiv-

alence.

�e Forward Direction. Let τ be the satisfying assignment for the LNES. We con-

struct the desired allocation follows: (We show the allocation with respect to a particular

variable being set to one, the case for when a variable is set to zero is symmetric)

B If τ(xi) = 1, we assign Ai,Bi to agent Axi and Di,D
′
i to agent Axi .

B Allocate one good each to the two shadow agents corresponding to negative xi
from the set (A ′i,B

′
i) such that both agents get one good that they approve

B If literal xi occurs in clauses i and j, allocate exactly one of (CLj ,C
R
j ) and one

of (CLk,C
R
k) respectively to the two shadow agents corresponding to positive xi

according to the allocation status of these goods .

B Allocate all the S ′is to the respective T ′is (this is true irrespective of any variable

assignment)

As mentioned above, the assignment is symmetric when τ(xi) = 0. It is easy to verify

that the above assignment is complete and non-wasteful (NW). We allocate at least one

and at most two approved goods to any agent in the assignment, hence, the assignment

is EQ1.

�e Reverse Direction. We will now show the procedure to recover an assignment

for LNES given the EQ1+NW allocation π for the fair division instance. We �rst study

the structure of any valid allocation π.

Since the fate of all dummy agents along with all the S ′is is �xed in all valid allocations

(each dummy agentAdi is assigned a good Si that she likes), we do not consider them in

our analysis. �e fair division instance has total 2p (corresponding to the positive and

negative literals for each variable)+4p (shadow agents)= 6p agents. Similarly, there are

4p (corresponding to shadow agents) +2q (for the clauses) +2p (dummy) = 8p (since

p = q) goods present in the constructed instance. �e 2p dummy good needs to be

allocated to at least p literal agents due to NW. We next show that these 2p goods will

be allocated between exactly p literal agents one corresponding to each variable for the

allocation to be NW + complete.

For the sake of contradiction, let us assume that strictly more than p literal agents get

their allocation from the set of dummy goods. One needs exactly 2p shadow agents to

pick-up the 2p goods corresponding to p clauses since these are separated by S ′is. �is

leaves us with 4p goods from core clauses which needs all of the remaining 2p shadow

agents (each can pick one) and at least p (each can pick two) literal agents for complete
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NW allocation. Hence, exactly p literal agents get allocation from the set of dummy

goods and all literal agents get two goods each in any complete NW allocation.

Given that we want to allocate two shadow goods to a literal agent, these two goods are

either goods corresponding to the two positive shadow variables or to the two negative

shadow variables due to non-wastefulness. Hence, for each variable xi, either two posi-

tive or two negative shadow agents occupy the clause goods. At this stage, we propose

the assignment for LNES. We set the variable xi = 1 i� the dummy goods (Di,D
′
i are

allocated agentAxi . Otherwise we set xi = 0. We show that the proposed assignment is

indeed a satisfying assignment. It is clear that each variable is set to either zero or one.

Also, for each clause Cj, the variables corresponding to the agents which received CLj
and CRj , are the two variables satisfying that clause. For each variable, since either the

positive literal or negative literal corresponding to the variable satis�es the two clauses

it appears in, the assignment extracted is a valid assignment (i.e. does not have any

con�ict).

In the above reduction, we do not speci�cally use the notion of EQ1, and its just a con-

sequence of reduction; the same construction also shows hardness for determining the

existence of onlyNon−wasteful allocations on the path even without any other fair-

ness notion. It is interesting to note that every agent approves only a constant number

of goods and consequently have only constant number of approval intervals.

8.4.2 Complexity of �nding EQ1+complete allocation with max-

imum utility

For complete EQ1 allocations, we know the existence from �eorem 30. An e�cient

algorithm to compute a complete EQ1 allocation for any ordering of agents was shown

in section 8.3.1. We note that, the utility obtained by each agent through an allocation

from 8.3.1 is dependent upon the initial ordering of the agents. It is easy to see that,

among all these complete EQ1 allocations, there exist an allocation which maximizes

the total utility over the given instance (i.e. maximizing the summation of utilities of all

agents from the allocation) for some initial ordering over the agents.

In this section, using turing reduction from Linear Near-Exact Satisfiability(LNES)

we show that an algorithm which �nds complete EQ1 allocation which maximizes the

utility is unlikely to run in polynomial time.

�eorem 33. Unless P = NP, there is no polynomial time algorithm for computing com-

plete EQ1 allocation which maximizes the utility over given instance.

Proof. Our construction is similar to the one used in �eorem 8.4.3. Letφ be an instance

of LNES in the standard notation. We introduce one good for every core clause, denoted

Ai,Bi,A
′
i,B
′
i, and three goods for every auxiliary clause, denoted CLi ,Si,C

R
i . We also

introduce 2p dummy goods denoted by D1,D
′
1, . . . ,Dp,D

′
p and a separator good S0.

We again, introduce agent corresponding to every literal and a an agent for every shadow

variable as we did in �eorem 8.4.3 with the same set of approved goods for each agent.

For the sake of completeness, we describe the valuations for each agent. For a main
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variable xi, the agent corresponding to the positive literal xi (Axi) approves the goods

Ai,Bi,Di,D
′
i, while the agent corresponding to the negative literal xi (Axi) approves

the goods A′i,B
′
i,Di,D

′
i. If y is a shadow variable occurring in the core clause Ai and

auxiliary clause Cj, then the agent corresponding to y approves the goods Ai,C
L
j and

CRj . �e set of goods approved by y is analogously de�ned if the core clause it appears

in were to be Bi, A
′
i or B′i. Finally, we introduce q dummy agents T1, . . . , Tq and have

Ti approve Si for all i ∈ [q]. Lastly, we introduce a separator agent (A0) which approve

exactly one good S0.

�e goods appear in the following order:

A1,B1,A
′
1,B
′
1, · · · ,Ap,Bp,A′p,B′p,S0,CL1 ,S1,CR1 , · · · ,CLq,Sq,CRq,D1,D

′
1, · · · ,Dp,D′p

�is completes the description of the construction.

In any EQ1 allocation, the maximum utility for agents corresponding to the literals is

2 (i.e ui(Axi) = ui(Axi) 6 2 since the separator agent can have utility at most one.

Similarly, any agent corresponding to shadow variable can have utility at most one.

Notice that in order to obtain utility strictly greater than one, the allocation for shadow

agent must contain the separator good S0. Again, as separator agent only approves S0
this contradicts EQ1. It is easy to see that the maximum utility for separator agent is

one.

Next, we show that if there exist an algorithm A which �nds complete EQ1 allocation

which maximizes the utility then by running A on the constructed instance (say I) we

can solve the standard decision version of LNES. We run A on I and say return YES

instance of LNES, i� the allocation admits the following structure:

ui(Axi) = ui(Axi) = 2

ui(y) = 1

ui(A0) = 1

(8.1)

Clearly, conditions from equation 8.1 can be checked in polynomial time. Hence, using

A, the NP-complete LNES problem can be solved in polynomial time which is a contra-

diction.

Given YES instance of φ, let τ be the satisfying assignment for the LNES. Consider the

following allocation (π): (We show the allocation with respect to a particular variable

being set to one, the case for when a variable is set to zero is symmetric)

B If τ(xi) = 1, we assign Ai,Bi to agent Axi and Di,D
′
i to agent Axi .

B Allocate one good each to the two shadow agents corresponding to negative xi
from the set (A ′i,B

′
i) such that both agents get one good that they approve

B If literal xi occurs in clauses i and j, allocate exactly one of (CLj ,C
R
j ) and one

of (CLk,C
R
k) respectively to the two shadow agents corresponding to positive xi

according to the allocation status of these goods .
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B Allocate all the S ′is to the respective T ′is (this is true irrespective of any variable

assignment)

B Allocate S0 to A0.

Clearly, π exists for YES instance ofφ and satis�es equation 8.1. Since π is allocates each

agents its maximum possible utility the overall utility is maximum (we call this utility

u). Observe that an allocation which maximizes the individual utilities is the only way

to achieve utility u in I, hence, A must return allocation which satis�es 8.1.

Conversely, if A returns allocation π∗ which satis�es 8.1. �en, it is easy to see that

π∗ must follow the structure described above for allocation π due to the way valuations

are set up. Hence, there exist a satisfying assignment for φ (since we can recover a

valid solution using the structure of allocation π∗, for further details refer to the reverse

direction in �eorem 8.4.3).

8.4.3 Existence of Pareto Optimal Allocation

In this section, we study the complexity of Pareto Optimal allocations with equitability

and envyfreeness.

�eorem 34. Checking the existence of a connected allocation that is (a) EQ1 and PO, (b)

EF1 and PO, (c) EQ1 and has egalitarian welfare at least 2, or (d) EF1 and has egalitarian

welfare at least 2 is NP-complete even for a path and a (6, 4)-sparse binary valuations

instance.

Recently, Igarashi and Peters (IP19, �eorem 7) have shown of checking the existence of

a connected EF1+PO allocation of a path even for binary valuations. �eir construction

involves items that are valued by all agents, thus requiring O(n) sparsity. By contrast,

our result in �eorem 34 shows hardness even forO(1) sparse instances. Finally, we note

that the proof of �eorem 23 can also be adapted to show for egalitarian or utilitarian-

optimal EQ1 allocations of chores.
1

We will show a reduction from Linear Near-Exact Satisfiability (LNES) and our

construction will be similar to that in the proof of . Recall that an instance of LNES

consists of 5p clauses (where p ∈ N) denoted as follows:

C = {U1,V1,U
′
1,V

′
1, · · · ,Up,Vp,U′p,V ′p} ∪ {C1, · · · ,Cp}.

We will refer to the �rst 4p clauses as the core clauses, and the remaining clauses as the

auxiliary clauses. �e set of variables consists of p main variables x1, . . . , xp and 4p
shadow variables.

Each core clause consists of two literals and has the following structure:

∀ i ∈ [p],Ui ∩ Vi = {xi} and U′i ∩ V ′i = {xi}.

1
�e relevant transformation is u ′i,j = ui,j − 1.
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Each main variable xi occurs exactly twice as a positive literal and exactly twice as a

negative literal. �e main variables only occur in the core clauses. Each shadow vari-

able makes two appearances: as a positive literal in an auxiliary clause and as a negative

literal in a core clause. For i ∈ [p], we will let pi, ri, qi, and si denote the shadow vari-

ables that appear (as negative literals) in the core clausesUi, Vi,U
′
i and V ′i , respectively.

�at is, Ui := (pi ∧ xi),Vi := (ri ∧ xi), U
′
i := (qi ∧ xi), and V ′i := (si ∧ xi). Each

auxiliary clause consists of four literals, each corresponding to a positive occurrence of

a shadow variable.

�e LNES problem asks whether, given a set of clauses with the aforementioned struc-

ture, there exists an assignment τ of truth values to the variables such that exactly one

literal in every core clause and exactly two literals in every auxiliary clause evaluate to

true under τ.

We will start by discussing the proof of part (a) of �eorem 34, followed by that of part

(c) which uses the same construction.

Construction of the reduced instance. Let φ be an instance of LNES. We will begin

with the description of the reduced instance.

Goods: For every i ∈ [p], we introduce one good for every core clause denoted by Ui,

Vi,U
′
i,V
′
i, and six goods for every auxiliary clause denoted byCL1i ,CL2i ,S1i ,S

2
i ,C

R1
i ,CR2

i .

We refer to Ui, Vi, U
′
i, V

′
i as the core goods, CL1i ,CL2i ,CR1

i ,CR2
i as the auxiliary goods,

and S1i ,S
2
i as the separator goods. Next, we introduce two goods for each shadow vari-

able, i.e., corresponding to each of pi,qi, ri, si, we introduce the following shadow

goods: p1i ,p
2
i , r

1
i , r

2
i ,q

1
i ,q

2
i , s

1
i , s

2
i . Finally, we introduce 2p dummy goods denoted by

D1,D
′
1, . . . ,Dp,D

′
p, two additional separator goods S10,S

2
0, and three special goods

S1,S2,S3. �us, the total number of goods ism = 4p+6p+8p+2p+2+3 = 20p+5.

�e goods are arranged as shown in Figure 8.5.

U1,p
1
1,p

2
1, r

1
1, r

2
1,V1,U

′
1,q

1
1,q

2
1, s

1
1, s

2
1,V

′
1, · · · ,Up,p1p,p2p, r1p, r2p,Vp,U ′p,q1

p,q
2
p, s

1
p, s

2
p,V

′
p

(Core and shadow goods)

S10,S
2
0,C

L1
1 ,CL21 ,S11,S

2
1,C

R1
1 ,CR2

1 , · · · ,CL1p ,CL2p ,S1p,S
2
p,C

R1
p ,CR2

p

(Separator and auxiliary goods)

D1,D
′

1,D2,D
′

2, · · · ,Dp,D
′

p,S1,S2,S3

(Dummy and special goods)

Figure 8.5: �e instance used in the proof of part (a) of �eorem 34. �e path graph is

such that the goods in the top row are to the le� of those in the middle row, which are

to the le� of those in the bo�om row.

Agents: For every main variable xi, we will introduce two agentsaxi andaxi for the two

literals; these are referred to as main agents of the positive and negative type, respectively.

For every i ∈ [p], the agent axi approves (i.e., values at 1) the goods Ui,Vi,Di,D
′
i,
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while the agent axi approves the goods U′i,V
′
i,Di,D

′
i. We also introduce a shadow

agent for every shadow variable. If pi is a shadow variable occurring in core clause Ui
and auxiliary clause Cj, then the corresponding shadow agent pi approves the shadow

goods p1i ,p
2
i and the auxiliary goods CL1j ,CL2j ,CR1

j ,CR2
j . �e valuations of the other

shadow agents ri,qi, si are de�ned analogously. Next, we introduce p + 1 separator

agents t0, . . . , tp such that for every i ∈ [p], ti approves two separator goods S1i ,S
2
i .

Lastly, we introduce special agent as that approves the special goods S1,S2,S3.

�is completes the construction of our reduction. Notice that the constructed instance is

(6, 4)-sparse. Before presenting the proof of equivalence, we will establish in Lemma 22

that the each agent (except for the special agent) has a utility of 2 under any EQ1 and

PO allocation in the fair division constructed above.

Lemma 22. In any EQ1 + PO allocation, the utility of the special agent as is equal to 3
and that of every other agent is equal to 2.

Proof. Notice that in any PO allocation A, the special goods S1,S2,S3 must be allocated

to the special agent as. �is is because these goods lie at the end of the path and are

uniquely valued by as, and therefore any allocationA ′ that does not assign these goods

to as can be shown to be Pareto dominated by another allocation that is identical to A ′

except for the assignment of the special goods to the special agent. �erefore, the utility

of as under PO allocation must be equal to 3 (recall that as does not value any good

other than the special goods).

Now let A denote any EQ1 and PO allocation. Since the utility of the special agent in A

is equal 3, the EQ1 condition implies that the utility of every other agent in A is at least

2.

Since each separator agent t0, t1, . . . , tp approves exactly two goods, it must be that for

every i ∈ {0, 1, . . . ,p}, the separator goods S1i ,S
2
i are assigned to ti in A. Furthermore,

since the separator goods S1i ,S
2
i are placed next to each other on the path and these are

the only goods approved by ti, we can assume, without loss of generality, that these are

the only goods assigned to ti.

Now consider a shadow agent pi that appears in the core clause Ui and the auxil-

iary clause Cj. �us, pi approves two shadow goods p1i ,p
2
i and four auxiliary goods

CL1j ,CL2j ,CR1
j ,CR2

j . Note that pi cannot receive more than two goods that it approves;

if it does, then, due to connectedness constraint, its bundle should necessarily include

separator goods whose assignment has already been �xed. �us, each shadow agent pi
(analogously qi, ri, si) will have a utility of exactly 2 in A.

A similar argument shows that for any i ∈ [p], the main agent of positive (or negative)

type axi (or axi) will have a utility of at most 2 since all such agents approve two core

goods and two dummy goods. We therefore have that in any EQ1 and PO allocation,

all agents other than the special agent achieve a utility of exactly 2. �is completes the

proof of Lemma 22.

�e Forward Direction. Given a satisfying assignment τ for LNES, we will construct

the desired allocation as follows:

B Allocate the special goods S1,S2,S3 to the special agent as.
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B For each i ∈ {0, 1, . . . ,p}, the separator agent ti receives the separator goods S1i
and S2i .

B If τ(xi) = 1, then allocate {Ui,p
1
i ,p

2
i , r

1
i , r

2
i ,Vi} to agent axi and {Di,D

′
i} to agent

axi . In addition, allocate {U ′i,q
1
i ,q

2
i} to qi, and {s1i , s

2
i ,V

′
i } to si. Recall that qi and

si are the shadow variables that appear as negated literals in the core clauses U ′i
and V ′i , respectively, along with xi.

Otherwise, if τ(xi) = 0, then allocate {U ′i,q
1
i ,q

2
i , s

1
i , s

2
i ,V

′
i } to agent axi and

{Di,D
′
i} to agent axi . In addition, allocate {Ui,p

1
i ,p

2
i} to pi, and {r1i , r

2
i ,Vi} to

ri.

B Finally, for every j ∈ [p], allocate the sets {CL1j ,CL2j } and {CR1
j ,CR2

j } to the two

shadow agents whose corresponding literals satisfy the auxiliary clause Cj.

Observe that each good is assigned to exactly one agent in the aforementioned allocation.

Furthermore, each agent’s bundle is connected; in particular, each shadow agent either

receives a set of adjacent core and shadow goods (if the corresponding shadow variable

evaluates to false under τ), or a set of adjacent auxiliary goods (if the corresponding

shadow variable evaluates to true).

It is easy to verify that the utility of the special agent is equal to 3, and that of every

other agent is equal to 2. �us, the allocation is EQ1.

We will now argue that the above allocation, say A, is Pareto optimal. Suppose, for

contradiction, that another allocation A ′ Pareto dominates A. Since the special agent

and each separator agent receives all of its approved goods under A, the utilities of

these agents under A and A ′ must be equal. Furthermore, if a main agent has a strictly

higher utility underA ′, then by the connectedness constraint, its bundle must contain a

separator good, which leads to an infeasible assignment since these goods are necessarily

allocated to the separator agents. A similar argument shows that a shadow agent, too,

cannot receive a higher utility under A ′. �erefore, A must be Pareto optimal.

�e Reverse Direction. We will now show how to recover an LNES assignment given

a connected EQ1 and PO allocation, say A.

Since A is EQ1 and PO, we know from Lemma 22 that the special agent receives three

approved goods and every other agent receives two approved goods under A. �us, in

particular, for every i ∈ {0, 1, . . . ,p}, the separator goods S1i ,S
2
i are allocated to the

separator agent ti. Along with the connectedness constraint, this implies that for every

i ∈ [p], at least one of the main agents axi or axi will achieve a utility of 2 by either

receiving the intervalUi,p
1
i ,p

2
i , r

1
i , r

2
i ,Vi orU ′i,q

1
i ,q

2
i , s

1
i , s

2
i ,V

′
i . �is, in turn, forces at

least one pair of shadow agents—either {pi, ri} or {qi, si}—to obtain their utilities from

the auxiliary goods.

We will now show that exactly one of these two pairs of agents derive their utility from

the shadow goods, while the other pair meets the utility requirement though the aux-

iliary goods. Indeed, since there are 4p auxiliary goods (corresponding to p auxiliary

clauses), at most 2p shadow agents can obtain the desired utility from the auxiliary

goods. �erefore, for every i ∈ [p], exactly one pair of shadow agents—either {pi, ri} or

{qi, si}—are assigned shadow goods, while the other pair receives auxiliary goods. Note
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that this observation also shows that for every i ∈ [p], exactly one out of axi or axi is

assigned the dummy goods {Di,D
′
i}.

Overall, we have that one set of pmain agents gets exactly two core goods each (we will

refer them as the “lucky” agents), while the other set of p main agents gets two dummy

goods each (the “unlucky” agents). Notice that the two main agents corresponding to

a main variable cannot both be lucky, nor can both be unlucky due to the argument

presented earlier.

�is brings us to a natural way of deriving an LNES assignment τ from the allocation

A. If the main agent of the positive (respectively, negative) type is unlucky, then we

let τ(xi) = 0 (respectively, τ(xi) = 1). Furthermore, if A allocates a core good to a

shadow agent, then the corresponding shadow variable is set to 0, while shadow vari-

ables corresponding to shadow agents who receive auxiliary goods are set to 1. Note

that exactly 2p of the 4p shadow variables are set to 1 under this assignment and there

are no con�icting assignments, implying that τ is indeed a valid solution to the LNES

instance. �is completes the proof of part (a) of �eorem 34.

To prove part (c), we �rst observe that the argument in the forward direction remains the

same as in part (a), since the allocation constructed in the proof is EQ1 and satis�es the

desired egalitarian welfare condition. In the reverse direction, it is possible that under

the given allocation, say A, the special agent as no longer receives all three special

goods. By connectedness, this means that either S1 or S3 is not assigned to as under A.

�en, we can modifyA to obtain another allocation, sayA ′, that is identical toA except

for the allocation of the special goods, which are all assigned to the special agent. It is

easy to see thatA ′ is connected, satis�es EQ1, and is Pareto optimal. One could now use

an identical argument as in part (a) to infer a satisfying LNES assignment.

We will now proceed to proving part (b) of �eorem 34, which requires a slightly di�er-

ent construction.

Letφ be an instance of LNES. We will begin with the description of the reduced instance.

We note that the construction is similar to as that of part (a).

Goods: For every i ∈ [p], we introduce one good for every core clause denoted by Ui,

Vi, U
′
i, V

′
i, and two goods for every auxiliary clause denoted by CLi ,C

R
i . We refer to Ui,

Vi, U
′
i, V

′
i as the core goods, and CLi ,C

R
i as the auxiliary goods. Next, we introduce two

goods for each shadow variable, i.e., corresponding to each of pi,qi, ri, si, we introduce

the following shadow goods: p1i ,p
2
i , r

1
i , r

2
i ,q

1
i ,q

2
i , s

1
i , s

2
i . Finally, we introduce 3p dummy

goods denoted byD1
1,D

2
1,D

3
1, . . . ,D

1
p,D

2
p,D

3
p and two separator goods S10,S

2
0. �us, the

total number of goods ism = 4p+2p+8p+3p+2 = 17p+2. �e goods are arranged

as shown in Figure 8.6.

Agents: For every main variable xi, we will introduce two agentsaxi andaxi for the two

literals; these are referred to as main agents of the positive and negative type, respectively.

For every i ∈ [p], the agent axi approves the goods Ui,Vi,D
1
i ,D

2
i ,D

3
i , while the agent

axi approves the goods U′i,V
′
i,D

1
i ,D

2
i ,D

3
i . We also introduce a shadow agent for every

shadow variable. If pi is a shadow variable occurring in core clause Ui and auxiliary

clause Cj, then the corresponding shadow agent pi approves the shadow goods p1i ,p
2
i

and the auxiliary goods CLi ,C
R
i . �e valuations of the other shadow agents ri,qi, si are

de�ned analogously. Lastly, we introduce a separator agent a0 that approves the two
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U1,p
1
1,p

2
1, r

1
1, r

2
1,V1,U

′
1,q

1
1,q

2
1, s

1
1, s

2
1,V

′
1, · · · ,Up,p1p,p2p, r1p, r2p,Vp,U ′p,q1

p,q
2
p, s

1
p, s

2
p,V

′
p

(Core and shadow goods)

S1,S2,C
L
1 ,C

R
1 , · · · ,CLp,CRp

(Separator and auxiliary goods)

D1
1,D

2
1,D

3
1,D

1
2,D

2
2,D

3
2, · · · ,D1

p,D
2
p,D

3
p

(Dummy goods)

Figure 8.6: �e instance used in proof of part (b) of �eorem 34.

separator goods S10,S
2
0. �is completes the construction of our reduction. Notice that

the constructed instance is (5, 4)-sparse. Before presenting the proof of equivalence, we

will prove a structural result in Lemma 23.

Lemma 23. In any EF1 + PO allocation, the utility of each main agent is at least 2, and

exactly one of axi and axi is allocated an interval of three dummy goods that it approves.

Proof. Assume that for the variable xi, neither axi nor axi is assigned the interval

{D1
i ,D

2
i ,D

3
i}. Notice that these goods are only valued by axi and axi . In this case,

the maximum utility a�ained by any of axi and axi is two (through allocation of goods

among core clause goods). We pick one of them arbitrarily and allocate three dummy

goods (D1
i ,D

2
i ,D

3
i) to it in order to obtain a pareto dominant allocation which is a con-

tradiction. Hence, at least one of the literal agents for each variable will be assigned to

the corresponding chunck of three dummy goods.

Consider the case when both axi and axi share only D1
i ,D

2
i ,D

3
i in some EF1+PO al-

location. In this case, without loss of generality assume axi receives only one dummy

good. In this case, we can construct a new allocation where axi is assigned all three

dummy goods, and axi receives a good ui keeping everything else same. Again, the

newly constructed allocation in pareto dominant to the original allocation as the utility

of axi increases and for all other agents utility stays the same which is a contradiction.

Hence, we showed that at least one of axi ,axi will receive an entire chunck of corre-

sponding three dummy goods. Hence, in any EF1+PO allocation both axi and axi will

have utility at least two.

Lemma 23 implies that for each variable one of axi or axi will be allocated goods from

core clause goods (say axi). In order to achieve utility of at least two, axi will be allocated

an entire interval ui,p
1
i ,p

2
i , r

1
i , r

2
i , vi of goods (and will be allocated exactly this interval

in any PO allocation). Hence, in any EF1 allocation, agents corresponding to the shadow

variables pi and ri have to receive utility of at least one through auxiliary clause goods.

Note that there will be at least 2p such shadow agents out of total 4p, which need to

obtain utility of at least one from auxiliary goods (in order to have EF1 allocation). Since

there are at most 2p auxiliary goods except for (S1,S2), hence, each of these 2p agents

will be allocated exactly one auxiliary goods which they value.
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Hence, for any EF1 + PO allocation we will have the structure described in Lemma 23

and the paragraph above.

Given the structural properties of any EF1 + PO allocation, we omit the arguments for

forward and reverse directions as the they are similar to the proof of part (a) of �eo-

rem 34. �is completes the proof for part (b) of �eorem 34.

Next, to show the construction for part (d), we only need to make following minor

change: For each auxiliary clause we have four auxiliary goods CL1i ,CL2i ,CR1
i ,CR2

i in-

stead of CLi ,C
R
i . Note that constructed instance in this case is (6, 4)-sparse. Given this

modi�cation, the arguments for forward and reverse directions remain similar except

each shadow agent can now obtain a utility of 2.
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8.5 E�cient Algorithms for Restricted Preference Do-

mains

8.5.1 EQ1+NW allocations

In this section, we describe a common strategy for non-wasteful EQ1 allocations for

special classes of interval valuations. We �rst state the theorem statements and follow

that with a high level idea of our algorithms.

�eorem 35 (EQ1 and NW for binary le�-extremal valuations). �ere is a

polynomial-time algorithm that returns an EQ1 and NW connected allocation of a path

for binary le�-extremal valuations, whenever such an allocation exists.

�eorem 36 (EQ1 and NW for binary extremal valuations). �ere is a polynomial-

time algorithm that returns an EQ1 and NW connected allocation of a path for binary

extremal valuations, whenever such an allocation exists.

�eorem 37 (EQ1 and NW for binary k-interval valuations). �ere is a polynomial-

time algorithm that returns an EQ1 and NW connected allocation of a path for binary

k-interval valuations, whenever such an allocation exists.

Overview of the algorithm. Consider the case of Non-wasteful EQ allocations. In this

case, equitability implies same utility for each agent, and non-wastefulness implies each

agent is only allocated the goods it approves. Combining these two we obtain that each

agent should be allocated exactly same number of goods. Hence, given n agents andm

goods, we know that each agent will receive a bundle of
m
n

goods.

Now, consider the case of Non-wasteful EQ1 allocations. For such cases, it is easy to

see that every agent will receive a bundle of size either bm
n
c or dm

n
e. Given m,n it is

straightforward to compute the number of agents with bundle of size bm
n
c (say a) and

number of agents with bundle of size dm
n
e (say b).

For le�-extremal valuations and extremal valuations, we initially allocate the bundles of

bm
n
c goods to a agents which �nishes their intervals earliest (i.e. �rst a agents when we

sort the agents in ascending order according to their size of intervals). For the remaining

agents, we allocate bundles of size dm
n
e, again, in ascending order of interval lengths.

During execution of algorithm, if at any stage, if we are unable to �nd the allocation of

the sizes mentioned, we return NO instance, else we return the desired allocation.

We repeat a similar procedure for k-interval valuations except, here, when we are allo-

cating according to the sorted order of agents, we aim to maximize the number of agents

with larger sized bundles. We check the validity of such larger sized allocations by run-

ning a sanity check which veri�es that the current allocations does not cause any future

agent to lose an allocation with utility bm
n
c. Similar to the previous case, we return NO

if at some point we fail to �nd the allocations with given utilities. Otherwise, we return

the desired allocation.
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8.5.2 EQ1+PO allocations

It is easy to see that NW allocations are Pareto Optimal. In this section, we will show

that for Le�-Extremal, Extremal and Interval valuations, Pareto Optimality implies Non-

wastefulness. Given this, we can conclude that EQ1+PO is equivalent to EQ1+NW for

these special valuations. Hence, algorithms from Section 8.5.1 will work in the same way

for �nding EQ1+PO allocations.

�eorem 38 (EQ1 and PO for binary le�-extremal valuations). �ere is a

polynomial-time algorithm that returns an EQ1 and PO connected allocation of a path

for binary le�-extremal valuations, whenever such an allocation exists.

Proof. Let A be an EQ1+PO allocation which is wasteful. We borrow the notations from

Algorithm 2. Let A = {a1,a2, . . . ,an} be an ordering of agents, and {l1, l2, . . . , ln} be

the length of intervals such that L1 ⊆ L2 ⊆ . . . ⊆ Ln. Let the utilities of agents under

A be {u1,u2, . . . ,un}. Consider another allocation A?
, we start allocating from le�most

good on the path in order A of agents such that we allocate consecutive intervals of

utility ui to each ai for 1 6 i 6 n − 1. Note that this is possible since each agent

receives a utility of ui in A, and L1 ⊆ L2 ⊆ . . . ⊆ Ln. Notice that the partial allocation

(A?) is non-wasteful. At this stage, we allocate all the remaining goods to the last agent

an. Since A?
is non-wasteful, and utilities of �rst n − 1 agents are same in A and A?

;

the utility of last agent(u?
n) under A?

is strictly greater than un. �is contradicts the

pareto optimality of A. Hence, for the case of binary le�-extremal valuations, PO =⇒
NW.

�eorem 39 (EQ1 and PO for binary extremal valuations). �ere is a polynomial-

time algorithm that returns an EQ1 and PO connected allocation of a path for binary ex-

tremal valuations, whenever such an allocation exists.

We note that a similar argument as presented in �eorem 38 works for �eorem 39.

�eorem 40 (EQ1 and PO for binary k-interval valuations). �ere is a polynomial-

time algorithm that returns an EQ1 and PO connected allocation of a path for binary k-

interval valuations, whenever such an allocation exists.

Proof. Let A be ab EQ1+PO allocation which is wasteful. Let A = {a1,a2, . . . ,an} be

an ordering of agents sorted according to the earliest �nishing order of their valued

interval. Let {u1,u2, . . . ,un} be the utilities of agents according to A. Consider another

allocation A?
. Again, we start allocating from le�most good according to the orderA of

agents. For each agent ai for 1 6 i 6 n we �rst allocate an interval of utility ui, if the

next good a�er this allocation is not valued by ai+1, then we extend the interval of ai
until the good gi such that gi+1 is the �rst good valued by ai+1. We start the allocation

of ai+1 from gi+1. We repeat the same procedure for every agent. Note that it is possible

to allocate in this way since each agents ai for 1 6 i 6 n received utility of ui in A.

Since A?
is a non-wasteful allocation, at least one agent receives utility strictly more

than that in A which contradicts the pareto optimality of A.
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8.6 Conclusion and Open Problems

We initiated the study of EQ1 allocations under connectedness constraints. �e pur-

suit of connected EQ1 allocations satisfying non-trivial e�ciency guarantees resulted

in computational hardness. �is result motivated the exploration of two avenues for

tractability: relaxing the e�ciency requirement and assuming structured preferences.

Some of our results found broader applicability to other fairness notions (e.g., EF1) and

negatively valued items.

Going forward, it would be very interesting to map the intractability frontier for bi-

nary valuations in terms of (a.b)-sparsity. Our results establish hardness of a number

of problems even under (4, 4)-sparsity. On the other hand, (1,b)-sparse instances are

e�ciently solvable for any b. Resolving the complexity of intermediate cases is a natu-

ral next step. On the domain restriction front, the case of binary intervals without the

extremal structure could be of interest. Finally, extensions to general graphs (BCE
+

17)

or se�ings with mixed items (ACIW19) involving goods as well as chores are interesting

avenues for future research.
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