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Fair Covering of Points by Balls
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Abstract

We consider the problem of covering a multi-colored set
of points in Rd using (at most) k disjoint unit-radius
balls chosen from a candidate set of unit-radius balls
so that each color class is covered fairly in proportion
to its size. Specifically, we investigate the complexity
of covering the maximum number of points in this set-
ting. We show that the problem is NP-hard even in one
dimension when the number of colors is large. On the
other hand, for a constant number of colors, we present
a polynomial time exact algorithm in one dimension,
and a PTAS in any fixed dimension d > 2.

1 Introduction

Given a set P of n points in Rd each of which is col-
ored by one of t colors, the fair covering problem aims
to cover the maximum number of points using k unit-
radius balls such that the coverage for each color is in
proportion to its size. More precisely, let C be a family
of k unit radius balls, ci be the number of the points of
color i that are covered by C, and ni be the total num-
ber of points of color i, for i ∈ {1, . . . , t}. Then we say
that the covering C is fair if

bρi · c∗c 6 ci 6 dρi · c∗e

for all i ∈ {1, . . . , t}, where c∗ =
∑t
i=1 ci and ρi = ni/n

for i ∈ {1, . . . , t}. Among all fair coverings, we want
the one that maximizes the total coverage c∗. We note
that an empty covering trivially satisfies the fairness
condition but covers no points.

Achieving strict fair covering can be computationally
hard, so we also define the notion of approximately fair
covering. A covering C is called ε-fair for some ε ∈ [0, 1],
if

(1− ε) · bρi · c∗c 6 ci 6 (1 + ε) · dρi · c∗e

for all i ∈ {1, . . . , t}. The goal of the approximately fair
covering problem is then to find an ε-fair covering that
maximizes the number of covered points.

The topic of algorithmic fairness has received significant
attention recently [17, 25, 9, 15, 4, 10, 18, 7], especially
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with the increasing use of machine learning in policy
and decision making. Our paper explores the compu-
tational implications of fairness as a constraint in geo-
metric optimization by focusing on the specific problem
of covering by unit balls, or equivalently, fixed-radius
facility location. The different colors in our input rep-
resent different demographic groups and proportionality
is one of the most basic forms of fairness, requiring that
each group’s share in the solution is proportional to its
size. The proportional fairness can be easily extended
to weighted sharing by assigning nonuniform weights to
different points or color classes and measuring fairness
on the overall covered weights. The fair covering prob-
lem can also be viewed as fair clustering under the k-
center measure when each cluster is constrained to have
unit radius.

Our Results

In this paper, we investigate the aforementioned (ap-
proximately) fair covering problem under the discrete-
ness and disjointness constraints defined below. We
require the balls used in a covering to be chosen from
a given candidate set of unit-radius balls (discreteness)
and to be pairwise disjoint (disjointness). Formally, the
input of the problem consists of a set P of n t-colored
points in Rd, a candidate set B of m unit-radius balls
in Rd, and a number k that is the budget of balls to be
used. Our goal is to find a (approximately) fair covering
for P using at most k disjoint balls in B that covers the
maximum number of points. Our main results are the
following:

• We show that there exists an exact algorithm solv-
ing the fair covering problem in R1 in O(mnt) time.
Alternatively, the problem can also be solved in
O(nmk) time (Section 2.1).

• We show that the fair covering problem in R1 is
NP-hard if the number of colors is part of the in-
put. We also show that the problem is W[1]-hard
parameterized by the number of covering balls k
(Section 2.2).

• For a fixed d > 2 and a fixed number of colors, we
present a PTAS for the approximately fair covering
problem (Section 3).
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Related Work

The problem of covering points by balls or other geo-
metric shapes has a long history in computational ge-
ometry, operations research, and theoretical computer
science, due to its natural connections to clustering and
facility location problems [3, 14, 20, 23, 24]. It is known
that covering a set of two-dimensional points with a
minimum number of unit disks is NP-hard, and so is
the problem of maximizing the number of points cov-
ered by k unit disks [13, 19, 8, 11]. Recently, a number
of researchers have considered clustering and covering
problems with an additional constraint of fairness. In
this setting, the input consists of points belonging to dif-
ferent colors (classes), and the goal is to find a solution
where each cluster has approximately equal representa-
tion of all colors [21, 10, 6, 1, 22]. These formulations
are different from our model because we allow individ-
ual clusters to be unbalanced as long as in aggregate
each color receives its fair share. This non-local form
of fair representation seems much harder than requiring
each cluster to locally meet the balance condition. In
another line of work, [5, 15, 2] consider a colorful vari-
ant of the k-center problem where the goal is to satisfy
a minimum coverage for each color type. The colorful
covering however does not achieve fairness because some
color classes can have arbitrarily high representation in
the output, as long as other colors meet the minimum
threshold. In fact, enforcing the fairness by controlling
both the lower and the upper bounds of representation
seems to be a much harder problem, as suggested by
some of our hardness results in one dimension.

2 Fair Covering in One Dimension

We begin by considering the problem in one dimension.
Let P = {p1, . . . , pn} be a set of n points on the real line
each of which belongs to one of the t color classes, and
let B = {B1, . . . , Bm} be the candidate set of unit in-
tervals on the line. (Technically speaking, a unit-radius
ball in one dimension would be an interval of length 2,
but a unit-length interval seems more natural, so that we
shall use unit intervals in the following discussion. Note
that the problem with intervals of length 2 is equivalent
to the problem with unit intervals by simply scaling the
points and the intervals.) Our goal is to cover the maxi-
mum number of points using at most k disjoint intervals
in B under the fair covering constraint. We show that an
optimal covering can be computed in polynomial time
when the number t of colors is fixed, but the problem
becomes intractable when t is part of the input.

2.1 A Dynamic Programming Algorithm

For simplicity, we describe our algorithm for t = 2 and
use red/blue as the two colors for easier reference. The
extension to an arbitrary number of colors is straight-
forward.

Given integers r and b, we define an (r, b)-covering to
be a subset of B consisting of disjoint intervals that
covers exactly r red and b blue points. An optimal
(r, b)-covering is an (r, b)-covering that uses the mini-
mum number of intervals. We solve the fair covering
problem by computing an optimal (r, b)-covering for all
r, b ∈ {1, . . . , n}. Without loss of generality, we assume
that the unit intervals B1, . . . , Bm are sorted in the left-
to-right order. Let r(Bi) and b(Bi) be the number of
the red and blue points covered by Bi, respectively. For
each i ∈ {1, . . . ,m}, let πi < i be the largest integer
such that Bπi ∩ Bi = ∅; we assume π1 = 0. We make
a left-to-right pass over the set of input points and the
intervals on the real line, and compute πi, r(Bi), b(Bi)
for all i ∈ {1, . . . ,m}.
Define F [i, r, b] as the size of an optimal (r, b)-covering
using only intervals in {B1, . . . , Bi}. For the pairs (r, b)
such that no (r, b)-covering exists, we set F [i, r, b] =∞.
It is easy to see that F satisfies the following recurrence.

Claim 1

F [i, r, b] = min

{
F [i− 1, r, b]
1 + F [πi, r − r(Bi), b− b(Bi)]

}
The above recurrence immediately allows us to com-
pute the table F using dynamic programming, which
is shown in Algorithm 1. The base case for the dy-
namic program is F [i, 0, 0] = 0 for all i ∈ {1, . . . ,m}
and F [0, r, b] =∞ for all r, b ∈ {1, . . . , n}.

Algorithm 1: Computing the F -table

Input: P,B
1 Compute πi, r(Bi), b(Bi) for i ∈ {1, . . . ,m}
2 Initialize m× r × b sized table with value ∞
3 for i ∈ {0, . . . ,m}; r, b ∈ {0, . . . , n} do
4 F [i, r, b]←

min{F [i−1, r, b], 1+F [πi, r−r(Bi), b− b(Bi)]}
5 end
6 return F

Lemma 2 Algorithm 1 can be implemented in worst-
case time O((n+m) log(n+m) +mn2).

Proof. Sorting P and B takes O((n + m) log(n + m))
time. Computing πi, r(Bi), b(Bi) for all i ∈ {1, . . . ,m}
takes additional linear time. After that the F -table can
be computed in O(mn2) time. �



CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Once the F -table is computed, we can solve the fair
covering problem by checking all entries in the table for
which the (r, b)-covering is fair and has F [m, r, b] 6 k.
Among all such valid pairs, we return the pair (r∗, b∗)
with the maximum r∗ + b∗. Clearly, c∗ = r∗ + b∗ is the
optimum of the problem instance. We therefore have
the following result.

Theorem 3 The fair covering problem in R1 with t = 2
colors can be solved in O((n+m) log(n+m)+mn2) time.

The dynamic program easily extends to the case of t > 2
colors, by using a (t+ 1)-dimensional DP table.

Theorem 4 The fair covering problem in R1 can be
solved in O((n+m) log(n+m) +mnt) time.

Remarks. Recall that the fair covering problem we
investigate is defined with the discreteness and disjoint-
ness constraints. In fact, the problem without each of
these two constraints can also be solved using similar
dynamic programming approaches. We omit the details
here because our main focus is the problem with the
discreteness and disjointness constraints.

2.2 NP and W[1]-Hardness of the Fair Covering

In this section, we show that the one-dimensional fair
covering problem is NP-hard if the number of colors t
is large. We also show that the problem is W[1]-hard
parameterized by the number of intervals k.

Theorem 5 The one-dimensional fair covering prob-
lem with Ω(n) colors is NP-hard.

Proof. We reduce the well-known Exact Cover
problem [16] to our problem. Given a ground set U ,
a family F of subsets of U , and an integer `, the Exact
Cover problem is to decide if there exists a S ⊆ F of
size ` that contains each element of U exactly once. The
construction is described below.

Construction. Given an instance of Exact Cover
with U = {u1, u2, . . . , un}, F = {S1, S2, . . . , Sm}, and
an integer `, we construct a set of points P , and a set of
centersM as follows. The ith element of U is associated
with color i; thus, there are n color classes. We also
introduce an additional color 0, which we call special.
The set of points is organized in the following three
groups.

1. Basic Points: For each set Si ∈ F , we introduce
|Si| points, placed arbitrarily within the interval
[3i, 3i+ 1). Each point has the color of its element.

Figure 1: Constructed fair covering instance for
an Exact Cover instance U = {1, 2, 3}, F =
{(1, 3), (2), (1, 2)}, ` = 2. We introduce red (1), green
(2), and blue (3) colors corresponding to the elements in
the universe, and we also introduce cyan as the special
color. First five points are introduced in the basic points
group. Since f∗ = 2 (where f∗ is a maximum number
of sets to which an element of U belongs to), next, we
introduce one blue point so that each color except for
cyan has exactly two points. At last, we introduce 4
cyan points as enforcers (since f∗ = ` = 2).

The intervals corresponding to Si and Sj , i 6= j,
are distance 2 apart, which ensures that any unit
interval of B can cover points of at most one such
group.

2. Balancers: We add extra points for each color i to
ensure that all colors i = 1, 2, . . . , n end up with
the same number of points. Specifically, let f∗ be
the maximum number of sets to which an element
belongs, and let fi be the number of sets containing
the element ui. We introduce f∗−fi points of color
i in the interval [3(m+ i), 3(m+ i) + 1).

3. Enforcers: Finally, we introduce `f∗ points of color
0 (special color), at locations 3(m + n + 1), 3(m +
n+2), . . . , 3(m+n+ `f∗). These are needed in our
construction to enforce the fair covering condition.
Refer figure 1.

Finally, the set of centers M is defined as follows.

• For each Si ∈ F , we add a center at 3i+1/2, which
allows all points of that group to be covered by one
unit interval.

• Each enforcer point is also a center. We do not need
centers for the balancers—their role is primarily to
make all color classes have equal size.

Finally, we fix the number of covering intervals to be
k = 2`.

We now argue that the Exact Covering instance is
a yes instance if and only if our fair covering instance
admits a k-covering with at least n+ ` points.

For the forward direction of the proof, suppose S ⊆
F is an exact cover of size `, and T = {i | Si ∈ S}
be the set of indices. Then we build a covering C as
follows. We place first ` intervals centered at 3i + 1/2
for i ∈ T , and the remaining ` intervals are placed at
3(m + n + j) for j = 1, 2, . . . , ` covering one special
colored point each. Since S is an exact cover, C contains
exactly n + ` points. The covering is also fair, since
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all the colors i = 1, 2, . . . , n have the same number of
points f∗, and the special color 0 has `f∗ points. In the
covering, each of the color classes i = 1, 2, . . . , n has one
covered point and the special color has ` points.

For the reverse direction, let C be the fair covering with
at least n + ` points. We observe that a fair covering
necessarily contains the same number of points, say p,
for each color i = 1, 2, . . . , n, and contains exactly `p
points of the special color. For p = 2, to cover 2` special
colored points only, we need all 2` intervals. Hence,
for any fair covering, we get p < 2. This implies that
for the covering C, p = 1 to meet the overall covering
requirement. Since, we need ` intervals to cover ` special
colored points, it is easy to see that the remaining `
intervals cover exactly one point of every other color.
Hence, the intervals covered corresponds to an Exact
Cover. �

In the reduced instance above, the number of intervals is
dependent only upon the size of the Exact Cover (`).
The Exact Cover problem is known to be W[1]-hard
parameterized by ` [12]. Hence, the analogous results
for the fair covering problem is summarized as follows:

Theorem 6 The fair covering problem is W[1]-hard pa-
rameterized by the number of covering balls (k).

In dimensions d > 2, the maximum coverage problem
is NP-hard [13], and W[1]-hard [19], even without the
fairness constraint.

3 A PTAS for Fair Covering in d Dimensions

In this section, we describe a PTAS for the approxi-
mately fair covering problem in any fixed dimension d.
Specifically, given an approximate factor ε ∈ [0, 1], we
want to compute an ε-fair covering of P (using at most
k disjoint balls in B) such that the number of the points
covered is at least (1−ε) ·opt, where opt is the size of an
optimal fair covering of P . In other words, the approx-
imation is bi-criteria: one criterion is on the fairness of
the covering while the other one is on the quality of the
solution (i.e., the number of the points covered). For
the simplicity of exposition, we describe the algorithm
in two dimensions (d = 2) and for two colors (t = 2).
The extension to higher dimensions and the general case
of t > 2 colors is straightforward.

3.1 Shifted Partitions & Approximate Covering

When solving the fair covering problem in R1, we were
able to compute an optimal (r, b)-covering for any (r, b)
pair. This seems quite difficult in higher dimensions,

and so we resort to solving an approximate version of
this problem as follows. We want to compute a table
Γ [1 . . . n, 1 . . . n] of integers such that for each pair (r, b),
we have the following:

1. Γ [r, b] is at least the size of an optimal (r, b)-
covering, and

2. there exists r∗ ∈ [(1 − ε)r, r] and b∗ ∈ [(1 − ε)b, b]
such that Γ [r∗, b∗] is at most the size of an optimal
(r, b)-covering.

For convenience, we call such a table Γ an ε-approximate
covering table (ε-ACT) for the instance (P,B). Note
that to solve the approximately fair covering problem,
it suffices to compute an ε-ACT.

Lemma 7 Given an ε-ACT Γ for (P,B), one can solve
the approximately fair covering problem in polynomial
time.

Proof. Suppose an optimal fair covering covers r0 red
points and b0 blue points. We call a pair (r, b) with
r, b ∈ {1, . . . , n} feasible if (1) an (r, b)-covering is fair
and (2) there exists r∗ ∈ [(1−ε)r, r] and b∗ ∈ [(1−ε)b, b]
such that Γ [r∗, b∗] 6 k. We compute all feasible pairs,
which can clearly be done in polynomial time given Γ ,
and find the feasible pair (r, b) that maximizes r + b.
By definition, we can find r∗ ∈ [(1 − ε)r, r] and b∗ ∈
[(1−ε)b, b] such that Γ [r∗, b∗] 6 k. Note that an (r∗, b∗)-
covering is ε-fair. Furthermore, r+b > opt since (r0, b0)
is feasible, hence r∗ + b∗ > (1 − ε) · opt. Because Γ
is an ε-ACT, there exists an (r∗, b∗)-covering using at
most k (disjoint) disks in B. Therefore, r∗ + b∗ is a
(1− ε)-approximate solution for the approximately fair
covering problem. �

In order to compute an ε-ACT Γ , we use the shifting
technique [14]. Let h = h(ε) be an integer parameter
to be determined later. For an integer i ∈ Z, let �i,j
denote the h×h square [i, i+h]× [j, j+h]; we say �i,j is
nonempty if it contains at least one point in P . We first
compute the index set I = {(i, j) : �i,j is nonempty}.
This can be easily done in time polynomial in n and h,
by computing for each p ∈ P , the O(h2) squares �i,j
that contains p. For each (i, j) ∈ I, define Pi,j = P∩�i,j
and Bi,j = {B ∈ B : B ⊆ �i,j}. In the next step, we
compute a 0-ACT Γi,j for each (Pi,j ,Bi,j) with (i, j) ∈
I. We will show later in Section 3.2 how to compute
Γi,j in (ni,j + mi,j)

O(h2) time, where ni,j = |Pi,j | and
mi,j = |Bi,j |. At this point, let us assume we have the
0-ACTs Γi,j and finish the description of our PTAS. We
have the following key observation.

Lemma 8 Let {P1, . . . , Ps} be a partition of P and
B1, . . . ,Bs ⊆ B be disjoint subsets such that the disks
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in Bi do not cover any points in P\Pi. Given 0-ACTs
for (P1,B1), . . . , (Ps,Bs), we can compute a 0-ACT for
(P,
⋃s
i=1 Bi) in polynomial time.

Proof. Computing a 0-ACT for (P,
⋃s
i=1 Bi) is equiv-

alent to computing for all pairs (r, b) the size of the
smallest (r, b)-covering of (P,

⋃s
i=1 Bi). Since the disks

in Bi can only cover the points in Pi, the entire problem
instance can be divided into independent sub-problems
(P1,B1), . . . , (Ps,Bs). This allows us to solve the prob-
lem in polynomial time using dynamic programming;
see Algorithm 2. �

Algorithm 2: Computing the 0-ACT

Input: Γ1, . . . , Γs, where Γi is a 0-ACT for (Pi,Bi)
1 Initialize a s× n× n table F with value ∞
2 for t ∈ {1, . . . , s}; r, b ∈ {1, . . . , n} do
3 F [t, r, b]←

min06r′6r
06b′6b

{Γt[r′, b′] + F [t− 1, r − r′, b− b′]}

4 end
5 Γ ∗[r, b] = F [s, r, b] for all r, b ∈ {1, . . . , n}.
6 return Γ ∗

For x, y ∈ {0, . . . , h−1}, let Lx,y be the set of all integer
pairs (i, j) such that i mod h = x and j mod h = y (See
Fig. 2a). We write Ix,y = I ∩ Lx,y.

1 2 3 4 5
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Figure 2: (a) The squares �i,j for (i, j) ∈ L1,0, with
h = 2. (b) An illustration of the boundary points. The
outer square is �i,j and the inner square is [i + 2, i +
h − 2] × [j + 2, j + h − 2], with h = 12. The points in
the gray region (i.e., p2, p4, p5) are the boundary points
in �i,j .

Lemma 9 For all x, y ∈ {0, . . . , h−1}, the squares �i,j
for (i, j) ∈ Ix,y are interior-disjoint and cover all points
in P .

Proof. Note that the squares �i,j for (i, j) ∈ Lx,y are
interior-disjoint and cover the entire plane R2 (see Fig-
ure 2a for an example). It directly follows that the

squares �i,j for (i, j) ∈ Ix,y are interior-disjoint. Con-
sider a point p ∈ P and let (i, j) ∈ Lx,y such that
p ∈ �i,j . Clearly, (i, j) ∈ I as �i,j is nonempty and
hence (i, j) ∈ Ix,y. Therefore, all points in P are cov-
ered by the squares �i,j for (i, j) ∈ Ix,y. �

Fix x, y ∈ {0, . . . , h − 1}. We know by Lemma 9 that
{Pi,j : (i, j) ∈ Ix,y} is a partition of P and the collec-
tions Bi,j for (i, j) ∈ Ix,y are disjoint. Furthermore, the
disks in Bi,j do not cover any point in P\Pi,j . There-
fore, we can apply Lemma 8 to compute a 0-ACT Γ (x,y)

for (P,
⋃

(i,j)∈Ix,y
Bi,j) in polynomial time. We do this

for all x, y ∈ {0, . . . , h − 1}. Finally, we construct the
table Γ by setting Γ [r, b] = minx,y∈{0,...,h−1} Γ

(x,y)[r, b].

We shall show that Γ is a 12h−12
h2 -ACT for (P,B). To

this end, we introduce some notions. For a point p ∈ P
and a square �i,j , we say p is a boundary point in �i,j
if p ∈ �i,j and p /∈ [i+2, i+h−2]× [j+2, j+h−2] (See
Figure 2b). Now consider some x, y ∈ {0, . . . , h−1}. We
say p ∈ P conflicts with the pair (x, y) if p is a bound-
ary point in �i,j where (i, j) ∈ Ix,y is the (unique) pair
such that p ∈ �i,j . One can easily see that each point
p ∈ P conflicts with exactly h2 − (h− 2)2 pairs (x, y).

Lemma 10 For any P ′ ⊆ P , there exists some x, y ∈
{0, . . . , h− 1} such that the number of red (resp., blue)
points in P ′ conflicting with (x, y) is at most 12h−12

h2 ·n′red
(resp., 12h−12

h2 · n′blue), where n′red (resp., n′blue) is the
total number of red (blue) points in P ′.

Proof. Define δredx,y (resp., δbluex,y ) as the number of the
red (resp., blue) points in P ′ that conflict with (x, y).
Because any point p ∈ P conflicts with exactly h2−(h−
2)2 pairs (x, y), we have

h−1∑
x=0

h−1∑
y=0

δredx,y = n′red(h2 − (h− 2)2) = n′red(4h− 4).

Therefore, the number of the pairs (x, y) such that
δredx,y > 3n′red(4h − 4)/h2 is at most h2/3. Equiva-

lently, the number of the pairs (x, y) such that δredx,y <
3n′red(4h − 4)/h2 is at least 2h2/3. For the same rea-
son, the number of the pairs (x, y) such that δbluex,y <
3n′blue(4h − 4)/h2 is at least 2h2/3. Since 2h2/3 +
2h2/3 > h2, there exists at least one pair (x, y) that
simultaneously satisfies δredx,y < 3n′red(4h − 4)/h2 and

δbluex,y < 3n′blue(4h − 4)/h2. This completes the proof
of the lemma. �

Now we are ready to prove that Γ is a 12h−12
h2 -ACT.

Lemma 11 Γ is a 12h−12
h2 -ACT for (P,B).
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Proof. Set η = 12h−12
h2 . By the definition of a η-ACT,

we have to verify that (1) Γ [r, b] is at least the size
of a smallest (r, b)-covering of (P,B) and (2) there ex-
ist r∗ ∈ [(1 − η)r, r] and b∗ ∈ [(1 − η)b, b] such that
Γ [r∗, b∗] is at most the size of a smallest (r, b)-covering
of (P,B). Condition (1) is clearly true. Indeed, for
all x, y ∈ {0, . . . , h − 1}, Γ (x,y)[r, b] is the size of the
smallest (r, b)-covering of (P,

⋃
(i,j)∈Ix,y

Bi,j) and hence

is at least the size of a smallest (r, b)-covering of (P,B).
Next, we verify condition (2). Let B′ ⊆ B be a small-
est (r, b)-covering of (P,B) and P ′ ⊆ P be the points
covered by the disks in B′ (hence P ′ consists of r red
points and b blue points). By Lemma 10, there exist
x, y ∈ {0, . . . , h−1} such that the number of red (resp.,
blue) points in P ′ conflicting with (x, y) is at most ηr
(resp., ηb). Let B′′ = B′∩ (

⋃
(i,j)∈Ix,y

Bi,j) and P ′′ ⊆ P ′

be the points covered by the disks in B′′. Suppose P ′′

consists of r∗ red points and b∗ blue points. Note that
any disk in B′\B′′ can only cover the points in P that
conflict with (x, y). Therefore, any point in P ′ that does
not conflict with (x, y) must be contained in P ′′, which
implies that r∗ ∈ [(1 − η)r, r] and b∗ ∈ [(1 − η)b, b].
Since Γ (x,y) is a 0-ACT for (P,

⋃
(i,j)∈Ix,y

Bi,j), we have

Γ (x,y)[r∗, b∗] 6 |B′′| 6 |B′|. It follows that condition (2)
is also true. �

We set h to be the smallest integer such that 12h−12
h2 6 ε;

clearly, h = O(1/ε). Then by the above lemma, Γ is an
ε-ACT for (P,B). In this way, we obtain a PTAS for the
fair covering problem in R2.

Theorem 12 There exists a (1− ε)-approximation al-
gorithm for the fair covering problem in R2 which runs
in nO(1)mO(1/ε2) time.

Proof. In our algorithm, the most time-consuming
work is the computation of each Γi,j for (i, j) ∈ I, which

takes n
O(1)
i,j m

O(h2)
i,j time as claimed before. All the other

work can be done in time polynomial in h, n, m. Since
I = O(h2n), the overall time complexity of our algo-

rithm is (n+m)O(h2), i.e., nO(1)mO(1/ε2). �

The algorithm can be straightforwardly generalized to
higher dimensions and the case t > 2, resulting in the
following theorem.

Theorem 13 There exists a (1− ε)-approximation al-
gorithm for the t-color fair covering problem in Rd which

runs in nO(t)mO(1/εd) time.

3.2 Computing the 0-ACTs Γi,j

We now discuss the only missing piece in our algorithm
above: the computation of the tables Γi,j . Recall that

Γi,j is a 0-ACT for (Pi,j ,Bi,j). We show that each Γi,j

can be computed in n
O(1)
i,j m

O(h2)
i,j time where ni,j = |Pi,j |

and mi,j = |Bi,j |. The key observation is the following.

Lemma 14 For r, b ∈ {1, . . . , ni,j}, an (r, b)-covering
of (Pi,j ,Bi,j) is of size at most bh2/πc.

Proof. Recall that an (r, b)-covering of (Pi,j ,Bi,j) con-
sists of disjoint disks in Bi,j . All disks in Bi,j are con-
tained in the h × h square �i,j . The area of �i,j is h2

and the area of a unit-disk is π. Therefore, any subset
of disjoint disks in �i,j is of size at most bh2/πc. �

With the above observation, we can compute Γi,j as
follows. We enumerate all subsets of Bi,j of size at most
bh2/πc, and keep the ones that consist of disjoint disks.
In this way, we obtain all (r, b)-coverings of (Pi,j ,Bi,j)
for all r, b ∈ {1, . . . , ni,j}. By checking these coverings
one by one, we can find the smallest (r, b)-covering for
all r, b ∈ {1, . . . , ni,j}, and hence compute Γi,j . The

total time cost is n
O(1)
i,j m

O(h2)
i,j .

4 Conclusion

In this paper, we introduced a new fair-covering prob-
lem, which is motivated by fair representation of mul-
tiple demographics in a geometric facility location set-
ting. We proved that the problem is NP-hard even in
one dimension when the number of color groups is large.
When the number of colors is fixed, we presented a poly-
nomial time exact algorithm in one dimension, and a
PTAS in any fixed dimension. Many open problems re-
main, including whether one can achieve a constant fac-
tor approximation significantly faster than our PTAS,
and whether the PTAS can be achieved for covering by
non-disjoint balls.
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