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Input: n points in RY each colored with one of ¢ colors and budget k

e % o o Place k unit-radius balls to
¢ cover maximum number of
° points such that each color is

covered in proportion to its size

p; — fraction of color-class i (**), and
¢* — total number of points covered, then a covering is "e-fair" iff,
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> Maximum Coverace for applications in Clustering and Facility
Location

» Growing interest in Algorithmic Fairness

» Proportionality is a fundamental form of fairness
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In 2D, covering a set of points with a minimum number of disks or
covering maximum points with k disks is known to be NP-complete
(latter is known to be W([1]-hard)

Recently, [AEKM’19, BCFN’19] studied the "fair" clustering problem
when the input is a multi-colored point set

— Computes a solution where each cluster has equal representation of colors

[BIPV’19] A Constant Approximation for Colorful k-Center
— Given a multi-colored point set, computes a 2-approximation™ of the clustering

radius when each color only has minimum coverage requirement

(We study a novel geometric max cover problem where
proportionality implies both upper and lower limits for each color)
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l

Rest of the talk
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Equivalence

We compute an e-(r,b)-covering table C[r,b] that stores the size of
an (r,b)-covering V valid (r,b) pairs with properties:
Clr,b] is at least the size of an optimal (r,b)-covering
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Given Clr,b], e-Fair Covering can be solved in polynomial time.

— lterate through all fair (r,b) pairs, and check if corresponding
Clr*,b*] < k. We return such a maximum (r*,b*).
— An (r*,b*)-covering is €' -fair (where €’ < €)
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Partition the plane into & X h squares. Let Sy,...,S¢ be the set of
non-empty squares.

With a disjoint cover, each S; can contain at most O(h?) disks

For each S;, and V valid (r,b) pairs we compute,

k' | k" <k & k' is optimal sized (r,b)-cover in S; }
00

fR,‘[I‘,b] = {

Combining solution for a partition

Fls,r,b] <= ming,r  {Rs[r',b'1 +Fls—1,r—r',b—b']}
0<b'<h

0<s <!t
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Apply Shifting Technique and store the best solution in € after
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(due to time constraints, we skip the proof of this lemma)
We want ]2/;’7;12 <e = h=0(1/¢)

— Computing R;[r,b] takes (no(”mo“72)) time for each i
— Combining solution with DP take (7)) time
0(1),,0(h?) (nommo(e%))

— Overall, algorithm runs in time n~'"/m

Our approach generalizestod >2 and r > 2
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m We introduce a new geometric fair covering problem

m For 1D, we show a polynomial time algorithm when the
number of colors is small, and we show NP-hardness for Q(n)
colors.

m Constant factor approximation faster than our PTAS

m Fair Covering problem when balls are non-disjoint and
non-discrete

Thank You!
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