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I Maximum Coverage for applications in Clustering and Facility
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I Growing interest in Algorithmic Fairness
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Related Work

In 2D, covering a set of points with a minimum number of disks or

covering maximum points with k disks is known to be NP-complete

(la�er is known to be W[1]-hard)

Recently, [AEKM’19, BCFN’19] studied the "fair" clustering problem

when the input is a multi-colored point set

−→ Computes a solution where each cluster has equal representation of colors

[BIPV’19] A Constant Approximation for Colorful k-Center

−→ Given a multi-colored point set, computes a 2-approximation* of the clustering

radius when each color only has minimum coverage requirementy
(We study a novel geometric max cover problem where

proportionality implies both upper and lower limits for each color)
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Our Results

I In R1
, with two colors Fair Covering can be solved in O(mn2)

time and O(mn2) space

−→ Our dynamic programming approach generalizes for t > 2 colors with

O(mnt) bound on space and time

I ForΩ(n) colors, the problem is NP-hard

−→ We show a reduction from Exact Cover



6/11

Our Results

I In R1
, with two colors Fair Covering can be solved in O(mn2)

time and O(mn2) space

−→ Our dynamic programming approach generalizes for t > 2 colors with

O(mnt) bound on space and time

I ForΩ(n) colors, the problem is NP-hard

−→ We show a reduction from Exact Cover



6/11

Our Results

I In R1
, with two colors Fair Covering can be solved in O(mn2)

time and O(mn2) space

−→ Our dynamic programming approach generalizes for t > 2 colors with

O(mnt) bound on space and time

I ForΩ(n) colors, the problem is NP-hard

−→ We show a reduction from Exact Cover



6/11

Our Results

I In R1
, with two colors Fair Covering can be solved in O(mn2)

time and O(mn2) space

−→ Our dynamic programming approach generalizes for t > 2 colors with

O(mnt) bound on space and time

I ForΩ(n) colors, the problem is NP-hard

−→ We show a reduction from Exact Cover

I For d > 2, we show a PTAS with running time nO(t)mO(1/εd)



6/11

Our Results

I In R1
, with two colors Fair Covering can be solved in O(mn2)

time and O(mn2) space

−→ Our dynamic programming approach generalizes for t > 2 colors with

O(mnt) bound on space and time

I ForΩ(n) colors, the problem is NP-hard

−→ We show a reduction from Exact Cover

I For d > 2, we show a PTAS with running time nO(t)mO(1/εd)y
Rest of the talk



7/11

PTAS for higher dimensions

We compute an ε′-fair covering with (1−ε) ·opt points, where

opt −→ maximum points covered by a fair covering with k-balls

Maximum

Coverage
Fairness

Bi-criterion Approximation

(r,b)-covering problem: Computes a minimum cardinality subset of

disjoint disks covering exactly r-red, b-blue points.

Roadmap:
ε-(r,b)-covering←→ ε-fair covering (Equivalence)

↓
Within a constant sized square (Polytime)

↓
Combining solution with DP (Polytime)

↓
PTAS (Shi�ing Technique)
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ε-(r,b)-covering←→ ε-fair covering

Equivalence

We compute an ε-(r,b)-covering table C[r,b] that stores the size of

an (r,b)-covering ∀ valid (r,b) pairs with properties:

1 C[r,b] is at least the size of an optimal (r,b)-covering

2 there exists r? ∈ [(1−ε)r,r] and b? ∈ [(1−ε)b,b] such that

C[r?,b?] is at most the size of an optimal (r,b)-covering

Lemma

Given C[r,b], ε-Fair Covering can be solved in polynomial time.

−→ Iterate through all fair (r,b) pairs, and check if corresponding

C[r?,b?]6 k. We return such a maximum (r?,b?).
−→ An (r?,b?)-covering is ε′-fair (where ε′ 6 ε)
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Within a constant sized square and Combining with DP

Partition the plane into h×h squares. Let S1, . . . ,S` be the set of

non-empty squares.

With a disjoint cover, each Si can contain at most O(h2) disks

For each Si, and ∀ valid (r,b) pairs we compute,
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PTAS (Shi�ing Technique)

Apply Shi�ing Technique and store the best solution in C a�er

iterating through h2
Shi�ing Partitions to get

Lemma

C is a
12h−12

h2 -Fair Covering

(due to time constraints, we skip the proof of this lemma)

We want
12h−12

h2 6 ε =⇒ h = O(1/ε)

−→ Computing Ri[r,b] takes (nO(1)mO(h2)) time for each i
−→ Combining solution with DP take (nm)O(1)

time

−→ Overall, algorithm runs in time nO(1)mO(h2)
(nO(1)mO( 1

ε2 )
)

Our approach generalizes to d > 2 and t > 2
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Conclusions and Open Problems

We introduce a new geometric fair covering problem

For 1D, we show a polynomial time algorithm when the

number of colors is small, and we show NP-hardness forΩ(n)
colors.

Constant factor approximation faster than our PTAS

Fair Covering problem when balls are non-disjoint and

non-discrete

Thank You!
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