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Abstract. The Chamberlin-Courant voting rule is an important multi-
winner voting rule. Although NP-hard to compute on general profiles, it is
known to be polynomially solvable on single-crossing and single-peaked
electorates by exploiting the structures of these domains. We consider
the problem of generalizing the domain on which the voting rule admits
efficient algorithms.
On the one hand, we show efficient algorithms on profiles that are k
candidates or k voters away from the single-peaked and single-crossing
domains. In particular, for profiles that are k candidates away from be-
ing single-peaked or single-crossing, we show algorithms whose running
time is FPT in k. For profiles that are k voters away from being single-
peaked or single-crossing, our algorithms are XP in k. These algorithms
are obtained by a careful extension of known algorithms on structured
profiles [10,2]. This provides a natural application for the work by Elkind
and Lackner in [8], who study the problem of finding deletion sets to
single-peaked and single-crossing profiles.
In contrast to these results, for a different, but equally natural way of
generalizing these domain, we show severe intractability results. In par-
ticular, we show that the problem is NP-hard on profiles that can be
“decomposed” into a constant number of single-peaked profiles. Also, if
the number of crossings per pair of candidates in a profile is permitted
to be at most three (instead of one), the problem continues be NP-hard.
This stands in contrast with other attempts at generalizing these do-
mains (such as single-peaked or single-crossing width), as it rules out
the possibility of fixed-parameter (or even XP) algorithms when param-
eterized by the number of peaks, or the maximum number of crossings
per candidate pair.
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1 Introduction

A traditional election setting consists of voters expressing their preferences over
alternatives, where preferences can be modelled in several ways (approval bal-
lots, ternary ballots, top-truncated lists, total orders, and so forth). Usually,



given such a scenario, we would like to identify a winning alternative. In many
applications, however, we need to identify not one, but a fixed set of alterna-
tives that best represent the interests of the voters. Such a problem arises in
a variety of scenarios like committee selection, parliamentary elections, movie
recommendation systems, and so forth.

There are several ways of measuring how well a committee fares against a
set of votes. When votes are approval ballots, for instance, the maximum or the
sum of Hamming distances is often used as a measure of quality. We consider
the setting of votes given as complete rankings, and focus on the well-studied
Chamberlin-Courant rule [6], which achieves proportional representation. The
way this voting rule works is the following. We begin by fixing a notion of a
“dissatisfaction function” α : N → N, which simply specifies, by α(i), how un-
happy a voter is when she is represented by a candidate who is ranked at the ith

position on her list. Given a committee with k candidates, a voter is represented
by the candidate that she ranks the highest among candidates from X. If φ(v)
denotes the candidate that is representing voter v, the optimal committee un-
der the Chamberlin-Courant voting rule seeks to minimize either the sum or the
maximum value of α(posv(φ(v))), taken over all voters v (where posv(c) denotes
the ranking of the candidate c in the vote v).

The Chamberlin-Courant rule (and the closely related Monroe voting rule
which we do not consider in the present work) has several desirable properties.
It has been argued [10] that rules that achieve proportional representation are
particularly well-suited for electing committees that need to make unanimous
decisions, and in particular, that takes minority candidates into account. How-
ever, it turns out that finding an optimal committee under this rule is NP-hard,
and it is therefore unlikely to admit an efficient algorithm.

On the other hand, there have been promising developments showing that
the optimal Chamberlin-Courant committees can be computed efficiently on
structured profiles which are commonly encountered in practical scenarios. Two
such restrictions that have been particularly successful are the single-peaked and
single-crossing domains. In a parallel development, [8] showed various efficient
algorithms for detecting profiles that are close to being structured (that is, they
admit the structure on all but a small number of candidates or voters). We com-
bine these scenarios to address the following question: how well do the efficient
algorithms on the restricted domains extend to profiles that are of the latter
type, that is, they exhibit the properties of the domain on all but a small num-
ber of candidates or voters? We now turn to our findings in the context of this
question and closely related issues.

Our Contributions and Methodology. A natural framework for addressing the
problem of how well algorithms on structured domains scale up to nearly-
structured ones is parameterized complexity. Readers are referred to [7] for a
comprehensive introduction to this approach. To begin with, we show efficient
algorithms on profiles that k candidates or k voters away from the single-peaked
and single-crossing domains. In particular, for profiles that are k candidates away
from being single-peaked or single-crossing, we show algorithms whose running



time is FPT in k. For profiles that are k voters away from being single-peaked
or single-crossing, our algorithms are XP in k. These algorithms are obtained
by a careful extension of the the known algorithms [2,10] on the structured
profiles. This provides a natural application for the work by Elkind and Lack-
ner in [8], who study the problem of finding deletion sets to single-peaked and
single-crossing profiles.

In contrast to these results, for a different, but equally natural way of general-
izing these domain, we show severe intractability results. In particular, we show
that the problem is NP-hard on profiles that can be “decomposed” into a con-
stant number of single-peaked profiles. Also, if the number of crossings per pair
of candidates in a profile is permitted to be at most three (instead of one), the
problem continues be NP-hard. This stands in contrast with other attempts at
generalizing these domains (such as single-peaked or single-crossing width [10]),
as it rules out the possibility of fixed-parameter (or even XP) algorithms when
parameterized by the number of peaks, or the maximum number of crossings per
candidate pair.

Related Work. Our work builds primarily on two lines of work from before. We
appeal to the known algorithms that determine the optimal Chamberlin-Courant
committees on single-peaked profiles [2] and single-crossing profiles [10]. These
results have been be extended to other multiwinner voting rules, which we do
not consider in the present work. Also, efficient algorithms have been shown
on more general preference restrictions such as single-peakedness on trees, or
single-crossing width.

2 Technical Preliminaries

In this section, we introduce some of the notation and definitions that we will
use. For a more detailed introduction to notions relating to restricted domains
and voting rules, we refer the reader to the appropriate chapters in [4], and for
a comprehensive introduction to parameterized algorithms, we refer the reader
to [7].

For a positive integer `, we denote the set {1, . . . , `} by [`]. We first define some
general notions relating to voting rules. Let V = {vi : i ∈ [n]} be a set of n voters
and C = {cj : j ∈ [m]} be a set of m candidates. If not mentioned otherwise, we
denote the set of candidates, the set of voters, the number of candidates, and
the number of voters by C, V, m, and n respectively.

Every voter vi has a preference �i which is a complete order over the set C
of candidates. We say voter vi prefers a candidate x ∈ C over another candidate
y ∈ C if x �i y. We denote the set of all preferences over C by L(C). The n-tuple
(�i)i∈[n] ∈ L(C)n of the preferences of all the voters is called a profile. Note
that a profile, in general, is a multiset of linear orders. For a subset M ⊆ [n],
we call (�i)i∈M a sub-profile of (�i)i∈[n]. For a subset of candidates D ⊆ C, we
use P|D to denote the projection of the profile on the candidates in D alone. A
domain is a set of profiles.



The rest of this section is organized as follows. We first define the Chamberlin-
Courant voting rule. We then introduce the domain restrictions that are of in-
terest to us, and the notion of closeness to a restricted domain. We finally define
the problems that we will study subsequently.

Chamberlin-Courant. The Chamberlin–Courant voting rule is based on the no-
tion of a dissatisfaction function or a misrepresentation function. This function
specifies, for each i ∈ [m], a voter’s dissatisfaction from being represented by
candidate she ranks in position i.

Definition 1. For an m-candidate election, a dissatisfaction function is given
by a non-decreasing function α : [m]→ N with α(1) = 0.

A popular dissatisfaction function is Borda, given by αmB (i) = αB(i) = i− 1.
We now turn to the notion of an assignment function. Let k be a positive integer.
A k-CC-assignment function for an election E = (C,V) is a mapping Φ : V → C
such that ‖Φ(V)‖ 6 k. For a given assignment function Φ, we say that voter
v ∈ V is represented by candidate Φ(v) in the chosen committee. There are
several ways to measure the quality of an assignment function Φ with respect
to a dissatisfaction function α; we use the following two:

1. `1(Φ) =
∑
i=1,...,n α(posvi(Φ(vi))), and

2. `∞(Φ) = maxi=1,...,n α(posvi(Φ(vi))).

We are now ready to define the Chamberlin-Courant voting rule, which is the
primary focus of this paper.

Definition 2. For every family of dissatisfaction functions α = (αm)∞m=1, and
every ` ∈ {`1, `∞}, the α-`-CC voting rule is a mapping that takes an election
E = (C,V) and a positive integer k with k 6 ‖C‖ as its input, and returns
a k-CC-assignment function Φ for E that minimizes `(Φ) (if there are several
optimal assignments, the rule is free to return any of them).

Chamberlin and Courant [6] originally proposed the utilitarian variants of
their rules with a focus on the Borda dissatisfaction function. The egalitarian
variant was considered by, for instance, Betzler et al. [2].

single-peaked Profiles. A preference profile is said be single-peaked if there exists
an ordering σ over the candidates C such that the preference of every voter v
has the following structure: v has a favorite candidate c (sometimes called the
“peak” for v), and the further away a candidate d 6= c is from c in σ, the less it is
preferred by the voter v. The notion of single-peaked preferences was introduced
by Black [3] and a formal definition is as follows.

Definition 3 (single-peaked Domain). A preference �∈ L(C) over a set
of candidates C is called single-peaked with respect to an order �′∈ L(C) if,
for every pair of candidates x,y ∈ C, we have x � y whenever we have either
c �′ x �′ y or y �′ x �′ c, where c ∈ C is the candidate at the first position
of �. A profile P = (�i)i∈[n] is called single-peaked with respect to an order
�′∈ L(C) if �i is single-peaked with respect to �′ for every i ∈ [n].



We now turn to the definition of a k-composite single-peaked profile, which is
a natural generalization of the single-peaked notion above. We say that a profile
is k-composite single-peaked if there is an ordering of the candidates σ and a
partition of the candidate set into at most k parts such that each part induces
a single-peaked profile on σ restricted to that part. We note, importantly, that
this is different from the more well-studied notion of multipeaked profiles, where
we have the additional constraint that the k parts have to additionally form
intervals on a fixed global ordering. A similar notion called k-additional axis
where the votes(rather than the candidates) are divided into k buckets and each
bucket is single-peaked, has been studied in [9].

single-crossing Profiles. A preference profile is said to belong to the single-
crossing domain if it admits a permutation of the voters such that for any pair
of candidates a and b, there is an index j〈a,b〉 such that either all voters vj with
j < j〈a,b〉 prefer a over b and all voters vj with j > j〈a,b〉 prefer b over a, or
vice versa. The formal definition is as follows.

Definition 4 (single-crossing Domain). A profile P = (�i)i∈[n] of n pref-
erences over a set C of candidates is called a single-crossing profile if there
exists a permutation σ of [n] such that, for every pair of distinct candidates
x,y ∈ C, whenever we have x �σ(i) y and x �σ(j) y for two integers i and j
with 1 6 σ(i) < σ(j) 6 n, we have x �σ(k) y for every σ(i) 6 k 6 σ(j).

As we did with single-peaked profiles, we generalize the notion of single-
crossing domains to r-single-crossing domains in the following natural way: for
every pair of candidates (a,b), instead of demanding one index where the pref-
erences “switch” from one way to the other, we allow for r such switches. More
formally, a profile is r-single-crossing if for every pair of candidates a and b,
there exist r indices j0〈a,b〉, j1〈a,b〉, . . . , jr〈a,b〉, jr+1〈a,b〉 with j0〈a,b〉 = 1
and jr+1〈a,b〉 = n + 1, such that for all 1 6 i 6 r + 1, all voters vj with
ji〈a,b〉 6 j < ji+1〈a,b〉 are unanimous in their preferences over a and b.

Nearly Structured Domains. Let D = {SP, SC} be a fixed domain, where SP
refers to single-peaked domains, and SP denotes single-crossing domains. We
say that a profile P over candidates C has a candidate (voter) modulator of size
k to D if there exists a subset of at most k candidates (voters) such that the
restriction of the profile to all but the chosen candidates (voters) belongs to the
domain D. Whenever a profile admits a k-sized candidate modulator to D, we
say that it is k-close to D via candidates. The notion of being k-close to D via
voters is analogously defined.

The work of [9], ([5]) shows that it is polynomial-time to find the smallest
candidate (voter) modulator to the domain of single-peaked (single-crossing)
profiles respectively. While [8] showed 2-approximation and 6-approximation al-
gorithms for finding the smallest voter and candidate modulator to the domains
of single-peaked and single-crossing profiles, respectively. Therefore, in all our
problem formulations, we assume that we are given an instance of an election



with a modulator to either domain as a part of the input — since it is tractable
to find such modulators in all cases.

Parameterized Complexity. A parameterized problem is denoted by a
pair (Q,k) ⊆ Σ∗ × N. The first component Q is a classical language, and the
number k is called the parameter. Such a problem is fixed–parameter tractable
(FPT) if there exists an algorithm that decides it in time O(f(k)nO(1)) on in-
stances of size n. On the other hand, a problem is said to belong to the class XP
if there exists an algorithm that decides it in time nO(f(k)) on instances of size n.
We refer the reader to [7] for a more detailed introduction to the parameterized
paradigm.

Problem Definition. We now define the main problem that we address in this
work, which we denote by `,D-CC Via χ, where ` is an aggregation function,
D is a domain and χ is either candidates or voters, referring to the type of the
modulator we are given as a part of the input.

`,D-CC Via χ Parameter: k
Input: An election E = (C,V), a committee size b, a target misrepresen-
tation score R, a misrepresentation function α, and a k-sized χmodulator
X to the domain D.
Question: Is there a committee of size b whose `-misrepresentation
score under the function α is at most R?

3 Tractability on Nearly Structured Preference Profiles

The goal of this section is to establish the following theorem.

Theorem 1. For all ` ∈ {`1, `∞} and for all D ∈ {SP,SC}, the (`,D)-CC Via
Candidates problem is in FPT and the (`,D)-CC Via Voters problem is in XP.

We describe now informally our overall approach for solving the (`,D)-CC
Via χ problem. First, we brute force through all possible “behaviors” of the
solution on the modulator. Next, instead of solving the “vanilla” Chamberlin-
Courant optimization problem on the part of the profile that is structured (ac-
cording to the domain D), we adapt our solution to account for the guessed
behavior on the modulator. For ease of presentation, we define an intermedi-
ate auxiliary problem, which is an extension version of the original problem,
described below.

In the extension problem corresponding to (`,D), we are given, as usual,
an election E = (C,V), a committee size k, a target misrepresentation score R
and a misrepresentation function α. In addition, we are also given a subset of
candidates X and a partition of X into G and B. The promise is that the election
induced by the votes V when restricted to the candidates C \ X is structured



according to the domain D. The goal is to find an optimal Chamberlin-Courant
committee among the ones that contain all candidates in G and contain none of
the candidates in B. The formal definition is as follows. In the following, we say
that a committee respects a partition (D ] G ] B) of the candidate set C if it
contains all of G and none of B.

(`,D)-CC Extension
Input: An election E = (C,V), a partition of the candidates into
(D ] G ] B), a committee size b, a target misrepresentation score R,
a misrepresentation function α; such that the election induced by (D,V)
belongs to the domain D.
Question: Is there a committee of size b that respects (D]G]B) and
whose `-misrepresentation score under the function α is at most R?

Before describing how to solve the (`,D)-CC Extension problem, we first
establish that it is indeed useful for solving the (`,D)-CC Via χ problem. Let
D be a fixed domain from {Single-Peaked, Single-Crossing}. First, consider the
(`,D)-CC Via χ problem where we are given a k-sized candidate modulator as
input, or that χ is fixed to be candidates. Let (E = (C,V),b,R,α,X), denoted
by I, be an instance of (`,D)-CC Via χ. Recall that X is a candidate modulator
to the domain D, in other words, the election induced by (C \ X,V) has the
structure of D. Our algorithm proceeds as follows. For a subset of candidates
Y ⊆ X, let:

JY := (E = (C,V); (C \ X, Y,X \ Y),b,R,α).

If JY is a Yes-instance of (`,D)-CC Extension for some Y ⊆ X, then our
algorithm returns Yes and aborts. If, on the other hand, for every subset Y ⊆ X
of candidates it turns out that JY is a No-instance of (`,D)-CC Extension,
then we return No. It is easy to see that whenever the algorithm returns Yes,
assuming the correctness of the (`,D)-CC Extension procedure used, there
exists a committee that has the desired misrepresentation score.

To argue the correctness of the algorithm, we show that if I is a Yes-
instance then the algorithm does indeed produce a committee that can achieve
the desired misrepresentation score. To this end, let C? be a committee whose
`-misrepresentation score under the function α is at most R. Let Y? denote
C?∩X. Then note that C? is a committee that respects the partition D := C\X,
G := Y?, and B := X\Y?. Further, note that since X is a candidate modulator to
D, the election induced by (D,V) belongs to the domain D. Clearly, the instance
(E = (C,V); (D,G,B),b,R,α) is a well-formed input to the (`,D)-CC Exten-
sion problem, and C? is a valid solution to it. Assuming again the correctness of
the (`,D)-CC Extension procedure used, we are done. Observe that the run-
ning time of our algorithm here is 2kq(n,m), where q(n,m) is the time required
by the (`,D)-CC Extension procedure on an instance of size n+m.

We now turn to the (`,D)-CC Via χ problem where we are given a k-sized
voter modulator as input, or that χ is fixed to be voters. Here a direct brute-
force approach as in the previous case does not suggest itself, because of which



we suffer a greater overhead in our running time. For simplicity, we first describe
our algorithm for the egalitarian variant, that is, we fix ` = `∞. We later describe
the changes we need to make when we deal with the utilitarian variant.

Let (E = (C,V),b,R,α,X), denoted by I, be an instance of (`,D)-CC Via χ.
Recall that X is a voter modulator to the domain D, in other words, the elec-
tion induced by (C,V \ X) has the structure of D. For every voter, we guess
the candidate who represents that voter in an arbitrary but fixed, and valid,
Chamberlin-Courant committee. For such a guess µ, let Yµ denote the set of at
most k candidates who have been chosen to represent the voters in the modu-
lator. More specifically, a voter v ∈ X, let µ(v) denote the candidate that we
have guessed as the representative for the voter v, and let d(v) denote the set
of candidates ranked higher than µ(v) by the voter v. Note that Yµ is simply
∪v∈Xµ(v).

We first run the following easy sanity check: if, for u, v ∈ X, u 6= v, we have
that µ(v) ∈ d(u), then we reject the guess Y. Otherwise, define Bµ := ∪v∈Xd(v)
and Gµ := Yµ, and let Dµ := C \ (G ∪ B). Observe that Bµ and Gµ are disjoint
because of the sanity check. Further, let:

Jµ := (E = (C,V \ X); (Dµ,Gµ,Bµ),b,R,α).

It is easily checked that Jµ is a well-formed instance for (`,D)-CC Exten-
sion. As before, we return Yes if and only if there exists a guess µ for which Jµ is
a Yes instance of (`,D)-CC Extension. To see the correctness of this approach,
let C? be a committee whose `-misrepresentation score under the function α is
at most R. For each voter v ∈ X, let µ?(v) denote the top-ranking candidate
from C? in the vote of v. Let Y? be given by ∪v∈Xµ?(v), and let B? be the set
of all candidates ranked higher than µ?(v) in the votes v from X. Observe that
C? does not contain any candidates from B? by the definition of µ?.

Now, as before, define: G := Y?, B := B?, and D := C \ (G ∪ B). Clearly, the
instance (E = (C,V \ X); (D,G,B),k,R,α) is a well-formed input to the (`,D)-
CC Extension problem, and C? is a valid solution to it. Assuming again the
correctness of the (`,D)-CC Extension procedure used, we are done. Observe
that the running time of our algorithm here is nkq(n,m), where q(n,m) is the
time required by the (`,D)-CC Extension procedure on an instance of size
n+m. For the utilitarian version of the problem (where ` = `1), the procedure
is identical, except that we use R′ instead of R in the definition Jµ, where R′ is
R − RX,µ, and RX,µ is the sum of the misrepresentation score of the candidate
µ(v) with respect to the voter v, and the sum is over v ∈ X. It is easily verified
that the other details work out in the same fashion.

The rest of this section is section is devoted to showing that the (`,D)-
CC Extension problem can be solved in polynomial time by adapting suit-
ably the known algorithms for the Chamberlin-Courant problem on the relevant
domain D. These adaptations are sometimes subtle and in particular for the
single-peaked case, we have to treat the utilitarian and the egalitarian variants
separately (corresponding to ` = `1 and ` = `∞ respectively).



3.1 (`,D)-CC Extension for the Single-Crossing Domain

In this section we demonstrate a polynomial time algorithm for the (`,D)-
CC Extension problem for the case when D = SC. This builds closely on
the algorithm shown by [10]. First, we show a structural property which is an
easy adaptation of Lemma 5 in [10]. The statement corresponding to single-
crossing profiles states that there is an optimal committee for which an optimal
assignment assigns candidates in contiguous blocks over the single-crossing or-
der. For the (`,D)-CC Extension problem, this continues to be the case for
candidates c from D except that some candidates in the contiguous block may
be assigned to candidates in G instead of being assigned to c. We now state this
formally. In the statement below, an optimal b-CC assignment is considered only
among committees that respect the annotation (D,G,B) in the given instance I

of (`,D)-CC Extension.

Lemma 1 (?). Let I = (E = (C,V); (D,G,B),b,R,α) be an instance of (`,SC)-
CC Extension. Suppose V = (v1, . . . , vn) is the single-crossing order of the
votes and C = (c1, . . . , cm) is an ordering of the candidates according to vi.
Then for every b ∈ [m], every dissatisfaction function α for m candidates, and
for every ` ∈ {`1, `∞}, there is an optimal b-CC assignment Φ for E under
α − ` − CC such that for each candidate ci ∈ D, if φ−1(ci) 6= ∅, then there are
two integers ei and fi, with ei < fi, such that for every vote v in the set of
voters V ′ = {vei , vei+1, . . . , vfi }, φ(v) ∈ {ci} ∪ G. Moreover, for each i < j such
that Φ−1(ci) 6= ∅ and Φ−1(cj) 6= ∅, it holds that ei < fi.

Due to space considerations we omit the proof of the technical claim above,
however, we note that it is along the lines of the proof in [10]. In particular, ob-
serve that if there are voters u, v,w appearing in that order in the single-crossing
ordering, and for two candidates c1, c2 ∈ D, if u and w were to be assigned to
c1 and v were to be assigned to c2, then this would imply that c1 �u c2 and
c1 �w c2, while c2 �v c1, violating the single-crossing structure of the election
restricted to D. Since the only other assignments allowed are to candidates in
D, the claim follows. We now have the following natural consequence.

Lemma 2. (`,SC)-CC Extension admits a polynomial time algorithm, both
for when ` = `1 and when ` = `∞.

Proof. (Sketch)For Single-Crossing profiles we propose a modified version of the
dynamic programming routine which was originally developed in [10]. Here, for
i ∈ {0} ∪ [n], j ∈ [m − |G| − |B|] and t ∈ b − |G|, we define A[i, j, t] as the
best possible misrepresentation score that can be achieved by a committee of
size t+ |G| that respects the annotation (G,B,D) formed using a subset of first
j candidates considering first i votes, where the candidates of D are ordered
according to the ranking of the first voter in the single-crossing ordering and
the voters are ordered according to the single-crossing ordering. The recurrence
for single-crossing orders works by “guessing” the first voter v to be represented
by the candidate cj, and the optimal representation of the preceding voters is



found recursively. In our setting, this approach continues to work, except that
instead of simply adding up the misrepresentation score of cj for all voters in
the interval starting from v and ending at vi, we check (for every vote in this
interval) if there is a candidate from G who is ranked above cj, and appropriately
adjust the calculation of the misrepresentation score for such voters. The time
complexity of above algorithm turns out to be O(mn2k) (as calculating the
misrepresentation score for each voter can take O(n) time). ut

3.2 (`,D)-CC Extension for the Single-Peaked Domain

For the single-peaked domain, as alluded to earlier, we need to consider the
utilitarian and egalitarian variants separately. We first consider ` = `1. In the
following discussion the terms first and last are with respect to the societal
order, which we denote by A. A candidate ci is said to be smaller than another
candidate cj if the candidate ci appears before cj in the societal order A, and a
candidate is said to be larger if it appears after the other candidate. Betzler et
al [2] proposed separate algorithms for the utilitarian and egalitarian variants. To
solve (`,D)-CC Extension in this setting, we extend the dynamic programming
algorithm proposed by Betzler et al for the utilitarian setting.

Lemma 3. (`1,SP)-CC Extension admits a polynomial time algorithm.

Proof. Recall that we are given an instance (E = (C,V);G,B,D,b, r,R, `) of
(`1,SP)-CC Extension. If b = |G|, then there is nothing to do. If b > |G|,
we assume without loss of generality that there is at least one voter whose top
candidate does not belong to G, otherwise we may simply return Yes since
the committee G is already good enough for any reasonable R1. The main
semantics of the DP table employed previously is the following. For i ∈ [m]
and j ∈ 1, . . . , min(i,k), we define z(i, j) to be the total misrepresentation for
a set of j winners from {c1, . . . , ci} including ci. The final answer is given by
mini∈{k,...,m} z(i,k).

We let d denote |D| and let c1 � c2 � · · · cd be the single-peaked order.
As before, for i ∈ [m] and j ∈ 1, . . . , min(i,k), we define a modified DP ta-
ble as follows: let z(i, j) be the total misrepresentation for a set of j winners
from {c1, . . . , ci} including {ci} ∪ G. Now, note that the final answer is given by
mini∈{b′,...,m} z(i,b

′), where b′ = |G| − b. Observe that our solution respects
the partition (G,B,D), since the semantics of z are such that the candidates G
are always incorporated and no candidate from B is ever chosen. Towards de-
scribing the recurrence, we establish some notation. First, let g∗(v) denote the
highest-ranked candidate from G in the ordering of the voter v. Also, define:

g(p, i) :=
∑
v∈V

max{0, min{r(v, cp) − r(v, ci), r(v,g
∗(v)) − r(v, ci)}}

1 If R < α(1)∗n, for instance, then it is already impossible to achieve for any committee.



Intuitively, g(p, i) gives the potential gain of assigning candidate i to the voter
v, assuming that the voter v was previously assigned to either the candidate cp or
g∗(v). Both d(p, i) and g(i) can be precomputed in time O(nm2) by performing
one pass over the votes and two passes over the candidates.We are now ready to
describe the main recurrence:

z[i, j] = min
j−16p6i−1

(
z [p, j− 1] − g(p, i)

)
,

with the base case:

z[i, 1] = min(r(v, ci), r(v,g
∗(v)).

Due to space constraints, our argument for correctness only focuses on the
part that needs to be adapted appropriately from the proof of [2]. Let C∗ be a
committee that witnesses the value of z[i, j]. Let p be the largest index smaller
than i (in the societal ordering) which is such that cp ∈ C∗ and let g∗(v) be cq.
If for a voter v it holds that r(v, ci) < r(v, cp) and r(v, ci) < r(v, cq), then note
that r(v, ci) < r(v, ct) for all t < p. Then the contribution of such a voter v to
the misrepresentation of z[p, i−1] is min(r(v, cp), r(v, cq)). This implies that the
improvement in the misrepresntation score of this voter obtained by reassigning
the voter to the candidate ci is precisely given by g(p, i). For all other voters,
an assignment to ci does not improve their misrepresentation, so the algorithm
does nothing in these situations. The correctness follows from the fact that the
algorithm tries all possible values of p, and the inductively assumed correctness
of z[p, j− 1]. The time complexity of the core algorithm is O(m2), as both i and
j can take at most m values, coupled with the time to precompute d(p, i) and
g(i), the total time complexity is O(nm2). ut

We now turn to the egalitarian version of the rule, that is, ` = `∞. Here
again, the solution involves a straightforward adaptation of the approach of [2] to
account for the constraints imposed by the (G,B,D) annotations in the extension
problem.

Lemma 4. (`∞,SP)-CC Extension admits a polynomial time algorithm.

Proof. (Sketch.) Let q be the largest integer for which α(q) 6 R. We first remove
voters who have a candidate from G in their top q positions. Let V ′ denote the
remaining set of voters. For a voter v ∈ V ′, let Tq(v) denote the top q candidates
in v’s ranking. Consider the setM(v) := Tq(v)\B. Note that any valid committee
must contain a candidate from M(v) for all v ∈ V ′. However, observe that the
set M(v) ⊆ D, and therefore forms a continuous interval on the societal ordering
of candidates in D. Therefore our problem reduces to finding a clique cover of
size at most b− |G| on the interval graph that is naturally defined by the votes
in V ′, which can be found in time O(nm). ut



4 Hardness for Generalized Restrictions on the Domain

4.1 3-composite single-peaked domains.

To show the hardness of computing an optimal `∞-CC committee on double-
peaked domains, we reduce from the following variant of SAT, which is called
LSAT. In an LSAT instance, each clause has at most three literals, and further
the literals of the formula can be sorted such that every clause corresponds to
at most three consecutive literals in the sorted list, and each clause shares at
most one of its literals with another clause, in which case this literal is extreme
in both clauses. The hardness of LSAT was shown in [1]. For ease of description,
we will assume in the following reduction that every clause has exactly three
literals, although it is easy to see that the reduction can be extended to account
for smaller clauses as well.

Theorem 2. Computing an optimal `∞-CC committee with respect to the Borda
misrepresentation score is NP-hard even when the domain is a three-composite
single-peaked domain.

Proof. (Sketch.) Let φ be an instance of LSAT with variables x1, . . . , xn and
clauses C1, . . .Cm. Towards constructing the election instance, we introduce one
candidate for every literal in φ. Let p1 and qi denote the candidates corre-
sponding to the variable xi. We also introduce (n + 1) dummy candidates for
each variable (which is a total of n(n + 1) dummy candidates). Let d[i, j] de-
note the jth dummy candidate corresponding to the variable xi. We use C to
denote the 2n candidates corresponding to the literals, and D to denote the
set of dummy candidates. P and Q denote the candidates corresponding to the
positive and the negated literals respectively.

Let us fix the ordering σ on the candidates as follows. The first 2n candidates
are from C arranged according to the LSAT ordering. The last n(n + 1) candi-
dates are from D and are arranged in an arbitrary but fixed order. Let σ ′ be the
reverse of σ. For a subset of candidates X, the notation X refers to an ordering
of X according to σ. For a subset of candidates X ⊂ C, who occupy adjacent

positions in the LSAT ordering projected over C, the notation
−−−→
C \ X refers to

an ordering according to σ of the candidates from C \ X who appear after X

in the LSAT ordering and similarly
←−−−
C \ X refers to an ordering according to σ ′

of the candidates from C \ X who appear before X in the LSAT ordering. This

notation easily yields an ordering which is single-peaked — X �
−−−→
C \ X �

←−−−
C \ X.

For a subset of candidates X ⊂ C, who occupy adjacent positions in the LSAT

ordering projected over C, the notation
←−→
C \ X refers to an ordering according to

σ of the candidates from C\X who appear after X in the LSAT ordering followed
by an ordering according to σ ′ of the candidates from C \ X who appear before
X in the LSAT ordering. This notation allows us to easily express an ordering

which is single-peaked — X �
←−→
C \ X.

We would now like to setup the votes in such a way that a winning committee
corresponds to a valid satisfying assignment. We introduce one vote for every



clause as follows. Suppose the clause c consists of the literals (`1, `2, `3), and
let the candidates corresponding to these literals be t1, t2, t3 respectively. If
`1 < `2 < `3 in the LSAT ordering, then we introduce the following vote:

v(c) := t2 � t1 � t3 �
←−−−−−−−−−→
(C \ {t1, t2, t3}) � D

For every variable xi, we also introduce the following (n + 1) votes, with
1 6 j 6 (n+ 1):

v(xi, j) := d[i, j] � pi � qi �
←−−−−→
(P \ {pi}) �

←−−−−−→
(Q \ {qi}) �

←−−−−−−→
D \ {d[i, j]}

This completes a description of the profile. We fix the Borda misrepresenta-
tion target score at two and the committee size is set to n. It is easily checked
that this profile is three-composite single-peaked with respect to the partition
(P,Q,D). First we look at v(c) – the votes based on a clause. v(c) when pro-
jected on D is trivially single-peaked. v(c) when projected on C is single-peaked,
and hence when projected on P,Q ⊂ C will remain single-peaked . Now we look
at v(xi, j) – the votes based on variables, which are clearly single-peaked when
projected over P, Q and D individually. We now prove the equivalence of these
two instances.

In the forward direction, we simply pick the literals corresponding to a sat-
isfying assignment. If a satisfying assignment does not set a variable, then we
pick either pi or qi. This clearly satisfies every vote based on a clause v(c), if
a vote is not satisfied, then the corresponding clause will also not be satisfied.
This trivially satisfies the votes based on variables v(xi, j), as we pick at least
one from pi and qi satisfying v(xi, j) for all 1 6 j 6 n+ 1.

In the reverse direction, let W be a committee whose score is at most two.
Observe that W must choose at least one of pi or qi, for all 1 6 i 6 n. Indeed, if
not, then such a committee is forced to pick every d[i, j], 1 6 j 6 n+1, which is a
violation of the committee size. Since the committee has at most n candidates,
it follows by a standard pigeon-hole argument that |W ∩ {pi,qi}| 6 1 for all
1 6 i 6 n, which implies that we pick exactly one of pi or qi. Therefore, the
committee corresponds naturally to an unambiguous assignment of the variables.
It is easily checked that this satisfies every clause, because an unsatisfied clause
c would correspond to a voter v(c) whose Borda misrepresentation score would
exceed two. This completes the proof.

4.2 3-Crossing Profiles

In this section, we show the hardness of computing an optimal `∞-CC committee
with respect to the Borda misrepresentation score with respect to three-crossing
domains. The reduction is again from LSAT, and the construction is similar to
the one used in the proof of Theorem 2 in that we again have candidates cor-
responding to literals and votes representing clauses. A committee corresponds
to a satisfying assignment precisely when its misrepresentation score is at most
two. The main difference from before is in how the candidates are ordered in the
preferences of the voters.



Theorem 3. Computing an optimal `∞-CC committee with respect to the Borda
misrepresentation score is NP-hard even when the domain is three-crossing do-
main.

Proof. (Sketch.) Let φ be an instance of LSAT with variables x1, . . . , xn and
clauses C1, . . .Cm. Without loss of generality, let us assume that the ordering
of the clauses in the LSAT instance is also given by C1, . . . ,Cm. Towards con-
structing the election instance, we introduce one candidate for every literal in φ.
Let pi and qi denote the candidates corresponding to the variable xi. We also
introduce (n+1) dummy candidates for each variable (which is a total of n(n+1)
dummy candidates). Let d[i, j] denote the jth dummy candidate corresponding
to the variable xi. We use C to denote the 2n candidates corresponding to the
literals, and D to denote the set of dummy candidates.

Towards describing the votes, let us fix an ordering σ on the candidates as
follows. The first 2n candidates are from C arranged according to the LSAT
ordering. The last n(n+ 1) candidates are from D and are arranged in an arbi-
trary but fixed order. For a subset of candidates X, the notation X refers to an
ordering of X according to σ. We would now like to setup the votes in such a
way that a winning committee corresponds to a valid satisfying assignment. For
1 6 i 6 m−1, let Gi denote literals in the set Ci \Ci+1, while we let Gm denote
the literals in Cm. We are now ready to describe the votes. For every 1 6 i 6 m,
we introduce the vote vi, which has the literals of the clause Ci in the top three
positions, and the remaining candidates are ranked as follows:

vi := Gi � Gi+1 � · · · � Gm � Gi−1 � · · · � G1 � D

It is useful to note that the vote vi+1 can be thought of as a ranking obtained
from the vote vi by “pushing back” the tuple Gi to just behind Gm. Therefore,
the ordering among the Gi’s in vm is reverse of their ordering in v1. Observe that
if a literal occurs in Ci ∩Ci+1, then it appears among the top three positions of
both vi and vi+1.

We now turn to the second part of our profile, which consists of votes cor-

responding to the variables. Here, for a subset of candidates X, we will use X
to refer to an ordering of X according to vm. Now, for every variable xi, we
introduce the following (n+ 1) votes, with 1 6 j 6 (n+ 1).

vi,j := d[i, j] � pi � qi � (C \ {pi,qi}) � D \ {d[i, j]}

This completes a description of the profile. We fix the Borda misrepresenta-
tion target score at two and the committee size is set to n. The argument for
the equivalence of the instances is similar to that in the proof of Theorem 2, and
we will revisit it shortly. It can be shown, by a careful case analysis 2, that this
profile is three-crossing with respect to the following ordering of the votes:

v1, v2, . . . , vm, v1,1, . . . , v1,n+1, . . . , vi,1, . . . , vi,n+1, . . . , vn,1, . . . vn,n+1

2 We omit the details due to lack of space.



We now turn to a proof of equivalence. In the forward direction, we simply
pick the literals corresponding to a satisfying assignment. If a satisfying assign-
ment does not set a variable, then we pick either pi or qi. This clearly satisfies
every vote based on a clause (or the assignment would not be a satisfying one),
and trivially satisfies the votes based on variables.

In the reverse direction, let W be a committee whose score is at most two.
Observe that W must choose at least one of pi or qi, for all 1 6 i 6 n. Indeed, if
not, then such a committee is forced to pick every d[i, j], 1 6 j 6 n+1, which is a
violation of the committee size. Since the committee has at most n candidates,
it follows by a standard pigeon-hole argument that |W ∩ {pi,qi}| 6 1 for all
1 6 i 6 n. Therefore, the committee corresponds naturally to an unambiguous
assignment of the variables. It is easily checked that this satisfies every clause,
because an unsatisfied clause c would correspond to a voter v(c) whose Borda
misrepresentation score would exceed two. This completes the proof. ut

5 Concluding Remarks

We have made some progress in demonstrating that the Chamberlin-Courant
voting rule can be computed efficiently on nearly-structured domains, and there
are some notions of being “almost structured” for which the rule remains hard.
Several specific problems remain open. The most pertinent issue is whether the
problem admits a FPT algorithm when parameterized by the size of a voter
modulator to either single-peaked or single-crossing profiles. The complexity
of the utilitarian version of the voting rule on composite profiles or k-crossing
profiles is also open.
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