Motivation	Results Summary	Preliminaries	Tractability results	Hardness results

On the Comlpexity of Chamberlin-Courant on Almost Structured Profiles

Chinmay Sonar P R Vaidyanathan Neeldhara Misra

Indian Institute of Technology Gandhinagar

Algorithmic Decision Theory, 2017

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results
Outline				

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

- Introduction
- What is a Nearly Structured Profile?
- Related Work

2 Results Summary

- 3 Preliminaries
 - Chamberlin-Courant
 - Structured Profiles
 - Almost structured profiles

Tractability results

- (ℓ, \mathcal{D}) -CC Extension
- (ℓ, \mathcal{D}) -CC Extension via Candidates
- (ℓ, \mathcal{D}) -CC Extension via Voters
- 5 Hardness results
 - Hardness for 3-crossing profiles

Motivation ●000	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000000
Introducti Structured Pro				

• In practical settings, elections usually contain some structure

Motivation ●000	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000000
Introducti Structured Pro				

- In practical settings, elections usually contain some structure
- Examples include Single-peaked(SP) and Single-crossing(SC)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation ●000	Results Summary	Preliminaries	Tractability results	Hardness results
Introducti Structured Pro				

- In practical settings, elections usually contain some structure
- Examples include Single-peaked(SP) and Single-crossing(SC)

ション ふゆ アメリア メリア しょうくの

• When a voting profile has such structure, we refer it to as structured profile

Motivation ●000	Results Summary	Preliminaries	Tractability results	Hardness results
Introducti Structured Pro				

- In practical settings, elections usually contain some structure
- Examples include Single-peaked(SP) and Single-crossing(SC)

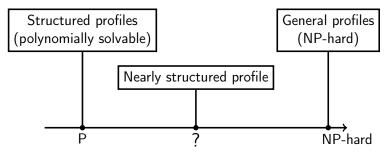
ション ふゆ アメリア メリア しょうくの

- When a voting profile has such structure, we refer it to as structured profile
- Many NP-hard voting rules turn out to be polynomially solvable for structured profiles

Motivation ○●○○	Results Summary	Preliminaries	Tractability results	Hardness results
Introducti Nearly Structu				

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

"Nearly Structured" profiles capture more of real-world scenarios


Motivation ○●○○	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000000
Introducti Nearly Structu				

- "Nearly Structured" profiles capture more of real-world scenarios
- Our goal was to study the complexity of Chamberlin-Courant in the region between structured profiles and general profiles

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Motivation ○●○○	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000000
Introduct Nearly Structu				

- "Nearly Structured" profiles capture more of real-world scenarios
- Our goal was to study the complexity of Chamberlin-Courant in the region between structured profiles and general profiles

Motivation ○○●○	Results Summary	Preliminaries	Tractability results	Hardness results 0000000
Introducti What is a Near	ON rly Structured Profi	le?		

• A nearly structured profile is a profile that is "close" to admitting structure

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Motivation ○○●○	Results Summary	Preliminaries	Tractability results	Hardness results 0000000
Introducti What is a Near	ON rly Structured Profi	le?		

- A nearly structured profile is a profile that is "close" to admitting structure
- A popular notion of closeness to structure is by deletion of a small part of the profile.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 0000000
Introduction What is a Near	ON 'ly Structured Profi	le?		

- A nearly structured profile is a profile that is "close" to admitting structure
- A popular notion of closeness to structure is by deletion of a small part of the profile.
- For example, one might say that a profile is k-close to being single-crossing by voter deletion to mean that there exists a subset S of at most k voters such that the election instance projected on V \ S is single-crossing.

Motivation ○○○●	Results Summary	Preliminaries	Tractability results	Hardness results 0000000
Related V	Vork			

 $\bullet\,$ The problem of finding deletion sets to single-peaked and single-crossing has been studied 1

э.

¹Elkind & Lackner: On detecting nearly structured preference profiles

²Chamberlin & Courant: Representative deliberations and representative decisions

 $^{^{3}\}mathsf{Procaccia},$ Rosenschein & Zohar: Multi-Winner Elections: Complexity of Manipulation, Control, and Winner-Determination

⁴Betzler, Slinko & Uhlmann: On the computation of fully proportional representation

⁵Skowron, Yu, Faliszewski & Elkind: The complexity of fully proportional representation for single-crossing electorates $\langle \Box \rangle + \langle \overline{C} \rangle + \langle \overline{C} \rangle + \langle \overline{C} \rangle$

Motivation ○○○●	Results Summary	Preliminaries 0000	Tractability results	Hardness results
Related V	Vork			

- $\bullet\,$ The problem of finding deletion sets to single-peaked and single-crossing has been studied $^1\,$
- Application of this work to NP-hard voting rules seems promising

э.

¹Elkind & Lackner: On detecting nearly structured preference profiles

²Chamberlin & Courant: Representative deliberations and representative decisions

 $^{^{3}\}mathsf{Procaccia},$ Rosenschein & Zohar: Multi-Winner Elections: Complexity of Manipulation, Control, and Winner-Determination

⁴Betzler, Slinko & Uhlmann: On the computation of fully proportional representation

⁵Skowron, Yu, Faliszewski & Elkind: The complexity of fully proportional representation for single-crossing electorates $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle$

Motivation ○○○●	Results Summary	Preliminaries	Tractability results 000000	Hardness results 0000000
Related V	Vork			

- $\bullet\,$ The problem of finding deletion sets to single-peaked and single-crossing has been studied 1
- Application of this work to NP-hard voting rules seems promising
- Chamberlin-Courant(CC) is one such rule ²

э.

¹Elkind & Lackner: On detecting nearly structured preference profiles

²Chamberlin & Courant: Representative deliberations and representative decisions

 $^{^{3}\}mathsf{Procaccia},$ Rosenschein & Zohar: Multi-Winner Elections: Complexity of Manipulation, Control, and Winner-Determination

⁴Betzler, Slinko & Uhlmann: On the computation of fully proportional representation

⁵Skowron, Yu, Faliszewski & Elkind: The complexity of fully proportional representation for single-crossing electorates $\langle \Box \rangle + \langle \overline{C} \rangle + \langle \overline{C} \rangle + \langle \overline{C} \rangle$

Motivation ○○○●	Results Summary	Preliminaries	Tractability results 000000	Hardness results 0000000
Related V	Vork			

- $\bullet\,$ The problem of finding deletion sets to single-peaked and single-crossing has been studied 1
- Application of this work to NP-hard voting rules seems promising
- Chamberlin-Courant(CC) is one such rule ²
- $\bullet\,$ CC is NP-hard for the general setting 3 and polynomially solvable for structured profiles 4 5

= 900

¹Elkind & Lackner: On detecting nearly structured preference profiles

²Chamberlin & Courant: Representative deliberations and representative decisions

 $^{^{3}\}mathsf{Procaccia},$ Rosenschein & Zohar: Multi-Winner Elections: Complexity of Manipulation, Control, and Winner-Determination

⁴Betzler, Slinko & Uhlmann: On the computation of fully proportional representation

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 0000000
Results S	ummary			

• We show tractability results for Chamberlin-Courant on profiles that are k candidates/voters away

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

⁶MM: Minimax (egalitarian version) ⁷Denotes perfectly structured profiles

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 0000000
Results	Summary			

• We show tractability results for Chamberlin-Courant on profiles that are k candidates/voters away

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

• We also show severe intractability results for other natural generalizations of these domains for Chamberlin-Courant

⁶MM: Minimax (egalitarian version) ⁷Denotes perfectly structured profiles

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results
Results	Summary			

- We show tractability results for Chamberlin-Courant on profiles that are k candidates/voters away
- We also show severe intractability results for other natural generalizations of these domains for Chamberlin-Courant

Table: Parameterized Complexity of considered multiwinner problems

	SP CC	SP MM ⁶ CC	SC CC	SC MM CC
Struct ⁷	$O(nm^2)$	O(nm)	$O(n^2mk)$	$O(n^2mk)$
VDel	$2^{Rk} O(nm^2)$	$2^{Rk}O(nm)$	$2^{Rk} O(n^2 m k)$	$2^{Rk} O(n^2 m k)$
CDel	$2^k O(nm^2)$	$2^k O(nm)$	$2^k O(n^2 m k)$	$2^k O(n^2 m k)$

ション ふゆ く 山 マ チャット しょうくしゃ

⁶MM: Minimax (egalitarian version)

⁷Denotes perfectly structured profiles

Motivation 0000	Results Summary	Preliminaries ●೦೦೦	Tractability results	Hardness results
Prelimina	ries			

Misrepresentation function: For an m-candidate election with votes specified as complete order over set of candidates, a *dissatisfaction function* is given by a non-decreasing function α: [m] → N with α(1) = 0.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Ex. Borda:
$$\alpha_B^m(i) = \alpha_B(i) = i - 1$$

Motivation 0000	Results Summary	Preliminaries ●000	Tractability results	Hardness results
Prelimina	ries			

- Misrepresentation function: For an m-candidate election with votes specified as complete order over set of candidates, a dissatisfaction function is given by a non-decreasing function $\alpha \colon [m] \to \mathbb{N}$ with $\alpha(1) = 0$. Ex. Borda: $\alpha_B^m(i) = \alpha_B(i) = i - 1$
- Assignment function: k-CC-assignment function for an election E = (C, V) is a mapping $\Phi \colon V \to C$ such that $|\Phi(V)| \leqslant k$

Motivation 0000	Results Summary	Preliminaries ●೦೦೦	Tractability results	Hardness results 0000000
Prelimina	ries			

- Misrepresentation function: For an m-candidate election with votes specified as complete order over set of candidates, a dissatisfaction function is given by a non-decreasing function $\alpha \colon [m] \to \mathbb{N}$ with $\alpha(1) = 0$. Ex. Borda: $\alpha_B^m(i) = \alpha_B(i) = i - 1$
- Assignment function: k-CC-assignment function for an election E = (C, V) is a mapping $\Phi \colon V \to C$ such that $|\Phi(V)| \leqslant k$

• Aggregation Function: Used to measure the quality of Assignment Function. We use following two in our work:

Motivation 0000	Results Summary	Preliminaries ●೦೦೦	Tractability results	Hardness results 0000000
Prelimina	ries			

- Misrepresentation function: For an m-candidate election with votes specified as complete order over set of candidates, a dissatisfaction function is given by a non-decreasing function $\alpha \colon [m] \to \mathbb{N}$ with $\alpha(1) = 0$. Ex. Borda: $\alpha_B^m(i) = \alpha_B(i) = i - 1$
- Assignment function: k-CC-assignment function for an election E = (C, V) is a mapping $\Phi \colon V \to C$ such that $|\Phi(V)| \leqslant k$

• Aggregation Function: Used to measure the quality of Assignment Function. We use following two in our work:

•
$$\ell_1 = \sum_{i=1,\dots,n} \alpha(\mathsf{pos}_{\nu_i}(\Phi(\nu_i))),$$
 and

Motivation 0000	Results Summary	Preliminaries ●000	Tractability results	Hardness results
Prelimina	ries			

- Misrepresentation function: For an m-candidate election with votes specified as complete order over set of candidates, a dissatisfaction function is given by a non-decreasing function $\alpha \colon [m] \to \mathbb{N}$ with $\alpha(1) = 0$. Ex. Borda: $\alpha_B^m(i) = \alpha_B(i) = i - 1$
- Assignment function: k-CC-assignment function for an election E = (C, V) is a mapping $\Phi \colon V \to C$ such that $|\Phi(V)| \leqslant k$
- Aggregation Function: Used to measure the quality of Assignment Function. We use following two in our work:

•
$$\ell_1 = \sum_{i=1,\dots,n} \alpha(\mathsf{pos}_{\nu_i}(\Phi(\nu_i)))$$
, and

•
$$\ell_{\infty}(\Phi) = \max_{i=1,\dots,n} \alpha(\operatorname{pos}_{\nu_i}(\Phi(\nu_i)))$$

 Motivation
 Results Summary
 Preliminaries
 Tractability results
 Hardness results

 0000
 000
 000000
 000000
 000000

Chamberlin Courant-rule

For every family of dissatisfaction functions $\alpha = (\alpha^m)_{m=1}^{\infty}$, and every $\ell \in \{\ell_1, \ell_\infty\}$, the α - ℓ -CC voting rule is a mapping that takes an election E = (C, V) and a positive integer k with $k \leq |C|$ as its input, and returns a k-CC-assignment function Φ for E that minimizes $\ell(\Phi)$.^{*a*}

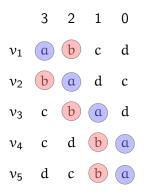
ション ふゆ く 山 マ チャット しょうくしゃ

^aChamberlin & Courant: Representative deliberations and representative decisions ^bBetzler, Slinko & Uhlmann: On the Computation of Fully Proportional Representation

Motivation 0000	Results Summary	Preliminaries ००●०	Tractability results	Hardness results 0000000
Structured	l Profiles			

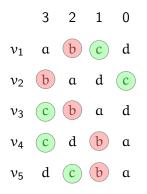
• Single-crossing profiles

Motivation 0000	Results Summary	Preliminaries ○○●○	Tractability results	Hardness results
Structured	l Profiles			


- Single-crossing profiles
- 3 2 1 0
- v_1 a b c d
- v_2 b a d c
- v_3 c b a d
- v_4 c d b a
- v_5 d c b a

Motivation 0000	Results Summary	Preliminaries ○○●○	Tractability results	Hardness results
Structured	l Profiles			

・ロト ・四ト ・ヨト ・ヨト


₹ 9Q@

• Single-crossing profiles

Motivation 0000	Results Summary	Preliminaries ○○●○	Tractability results	Hardness results
Structured	l Profiles			

• Single-crossing profiles

Motivation 0000	Results Summary	Preliminaries ○○○●	Tractability results	Hardness results 0000000
Modulato	ors			

k-Modulator

A profile is said to have a candidate/voter modulator of size k, if \exists a subset of size at most k candidates/voters such that the restriction of the profile to all but chosen candidates belongs to domain \mathcal{D} .

⁹Elkind & Lackner: On detecting nearly structured preference profiles + (= + (

⁸Bredreck, et al.: Are there any nicely structured preference profiles nearby?

Motivation	Results Summary	Preliminaries	Tractability results	Hardness results
0000		○○○●	000000	0000000
Modulato	rs			

k-Modulator

A profile is said to have a candidate/voter modulator of size k, if \exists a subset of size at most k candidates/voters such that the restriction of the profile to all but chosen candidates belongs to domain \mathcal{D} .

 Polynomial time algorithm for finding voter modulator and approximation algorithm for candidate modulator have been shown for Single-crossing profiles ⁸ 9

⁸Bredreck, et al.: Are there any nicely structured preference profiles nearby?

⁹Elkind & Lackner: On detecting nearly structured preference profiles > < 🗇 > < 🗄 > < 🛓 > 🚊 - 🔗 < 🔿 < 🔿

Motivation 0000	Results Summary	Preliminaries ○○○●	Tractability results	Hardness results 0000000
Modulato	ors			

k-Modulator

A profile is said to have a candidate/voter modulator of size k, if \exists a subset of size at most k candidates/voters such that the restriction of the profile to all but chosen candidates belongs to domain \mathcal{D} .

- Polynomial time algorithm for finding voter modulator and approximation algorithm for candidate modulator have been shown for Single-crossing profiles ⁸ 9
- (ℓ, D)-CC Via χ: denotes aggregation function ℓ over domain D and χ can be candidate or voter modulator

⁸Bredreck, et al.: Are there any nicely structured preference profiles nearby?

⁹Elkind & Lackner: On detecting nearly structured preference profiles 🕨 (🗇 🗸 🔄 🖉 🤄 🧐 🖓

Motivation 0000	Results Summary	Preliminaries	Tractability results ●00000	Hardness results 0000000
(ℓ, D)-CC	Extension			

• We are given an election E = (C, V), along with the partition of the set of candidates $C = D \uplus G \uplus B$, here G, B represents, partially formed committee and candidates which cannot be part of committee respectively. D represents to be decided through the run of algorithm

ション ふゆ アメリア メリア しょうくの

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results
(ℓ, \mathcal{D}) -CC	Extension			

- We are given an election E = (C, V), along with the partition of the set of candidates $C = D \uplus G \uplus B$, here G, B represents, partially formed committee and candidates which cannot be part of committee respectively. D represents to be decided through the run of algorithm
- \bullet We are given that the election restricted to (D,V) belongs to domain ${\mathcal D}$

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results
(<i>l</i> , D)-CC	Extension			

- We are given an election E = (C, V), along with the partition of the set of candidates $C = D \uplus G \uplus B$, here G, B represents, partially formed committee and candidates which cannot be part of committee respectively. D represents to be decided through the run of algorithm
- \bullet We are given that the election restricted to (D,V) belongs to domain ${\mathcal D}$
- Objective is to find committee of size b that respects the semantics of (D, G, B) with misrepresentation score at most R

 Our algorithm builds upon known polynomial time algorithm for Single Crossing profiles ¹⁰

 $^{^{10}}$ Skowron, Yu, Faliszewski & Elkind: The complexity of fully proportional representation for single-crossing electorates $\langle \Box
angle + \langle \Box
an$

- Our algorithm builds upon known polynomial time algorithm for Single Crossing profiles ¹⁰
- Algorithm is independent of choice of aggregation function

 $^{^{10}}$ Skowron, Yu, Faliszewski & Elkind: The complexity of fully proportional representation for single-crossing electorates $\langle \Box
angle + \langle \Box
an$

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results 0●0000	Hardness results
(ℓ, SC) -C	C Extension			

- $\bullet\,$ Our algorithm builds upon known polynomial time algorithm for Single Crossing profiles 10
- Algorithm is independent of choice of aggregation function
- The "Contiguous block" property continues to hold for modified algorithm which is key for correctness of our algorithm

 $^{^{10}}$ Skowron, Yu, Faliszewski & Elkind: The complexity of fully proportional representation for single-crossing electorates $\langle \Box
angle + \langle \overline{\Box}
angle - \langle$

Motivation 0000	Results Summary	Preliminaries	Tractability results 0●0000	Hardness results 0000000
(ℓ, SC) -C	C Extension			

- Our algorithm builds upon known polynomial time algorithm for Single Crossing profiles ¹⁰
- Algorithm is independent of choice of aggregation function
- The "Contiguous block" property continues to hold for modified algorithm which is key for correctness of our algorithm
- Dynamic programming algorithm admits polynomial running time in terms of number of candidates, voters and committee size

 $^{^{10}}$ Skowron, Yu, Faliszewski & Elkind: The complexity of fully proportional representation for single-crossing electorates $\langle \Box
angle \cdot \langle \Box
an$

• Given a k-sized candidate modulator - X

- Given a k-sized candidate modulator X
- Let $Y \subseteq X$ be an arbitrary subset

- Given a k-sized candidate modulator X
- Let $Y \subseteq X$ be an arbitrary subset
- Set $D := C \setminus X$, G := Y and $B := X \setminus Y$

- Given a k-sized candidate modulator X
- Let $Y \subseteq X$ be an arbitrary subset
- Set $D := C \setminus X$, G := Y and $B := X \setminus Y$
- If resulting (ℓ, D)-CC Extension instance is a Yes instance for some Y ⊂ X, return Yes

- Given a k-sized candidate modulator X
- Let $Y \subseteq X$ be an arbitrary subset
- Set $D := C \setminus X$, G := Y and $B := X \setminus Y$
- If resulting (ℓ, D)-CC Extension instance is a Yes instance for some Y ⊂ X, return Yes

• If no such Y yields a Yes, return No

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results
(ℓ, \mathcal{D}) -CC Correctness and	Extension via	Candidates		

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

\bullet Let C^{\star} be a optimal committee, and Y^{\star} be $C^{\star}\cap X$

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000000
(ℓ, \mathcal{D}) -CC Correctness and	Extension via	Candidates		

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 _ のへで

- \bullet Let C^{\star} be a optimal committee, and Y^{\star} be $C^{\star}\cap X$
- $D:=C\setminus X,\;G:=Y^\star$ and $B:=X\setminus Y^\star$

- \bullet Let C^{\star} be a optimal committee, and Y^{\star} be $C^{\star}\cap X$
- $D := C \setminus X$, $G := Y^*$ and $B := X \setminus Y^*$
- \bullet Since X is a candidate modulator, election induced by (D,V) belongs to domain ${\mathcal D}$

- Let C^* be a optimal committee, and Y^* be $C^* \cap X$
- $D := C \setminus X$, $G := Y^*$ and $B := X \setminus Y^*$
- \bullet Since X is a candidate modulator, election induced by (D,V) belongs to domain ${\mathcal D}$

 E = (C, V); (D, G, B) is a valid input to (l, D)-CC Extension and C* is a valid solution

- Let C^* be a optimal committee, and Y^* be $C^* \cap X$
- $D := C \setminus X$, $G := Y^*$ and $B := X \setminus Y^*$
- \bullet Since X is a candidate modulator, election induced by (D,V) belongs to domain ${\mathcal D}$

- E = (C, V); (D, G, B) is a valid input to (l, D)-CC Extension and C* is a valid solution
- Runtime(FPT): $2^k q(n, m)$, where q(n, m) is the time required for (ℓ, D) -CC Extension

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results ००००●०	Hardness results
(ℓ, \mathcal{D}) -CC Construction	Extension via	voters		

 $\bullet\,$ Given k-sized voter modulator - X

- Given k-sized voter modulator X
- In an arbitrary manner guess the candidates representing each voter in X avoiding conflicts within the sub-committee

- Given k-sized voter modulator X
- In an arbitrary manner guess the candidates representing each voter in X avoiding conflicts within the sub-committee

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

 \bullet Let $\mu(\nu)$ denote the candidate representing voter ν

- Given k-sized voter modulator X
- In an arbitrary manner guess the candidates representing each voter in X avoiding conflicts within the sub-committee
- \bullet Let $\mu(\nu)$ denote the candidate representing voter ν
- Let $d(\nu)$ denote the set of candidates ranked higher than $\mu(\nu)$ by voter ν

- Given k-sized voter modulator X
- In an arbitrary manner guess the candidates representing each voter in X avoiding conflicts within the sub-committee
- \bullet Let $\mu(\nu)$ denote the candidate representing voter ν
- Let $d(\nu)$ denote the set of candidates ranked higher than $\mu(\nu)$ by voter ν
- Setting $G := \bigcup_{\nu \in X} \mu(\nu)$, $B := \bigcup_{\nu \in X} d(\nu)$ and $D := C \setminus (G \cup B)$ invoke (ℓ, \mathcal{D}) -CC Extension

- Given k-sized voter modulator X
- In an arbitrary manner guess the candidates representing each voter in X avoiding conflicts within the sub-committee
- \bullet Let $\mu(\nu)$ denote the candidate representing voter ν
- Let $d(\nu)$ denote the set of candidates ranked higher than $\mu(\nu)$ by voter ν
- Setting $G := \bigcup_{\nu \in X} \mu(\nu)$, $B := \bigcup_{\nu \in X} d(\nu)$ and $D := C \setminus (G \cup B)$ invoke (ℓ, D) -CC Extension
- To ensure exclusivity of B and G, any guess in which there exists $u, v \in G$, such that $u \in d(v)$ can be rejected

- Given k-sized voter modulator X
- In an arbitrary manner guess the candidates representing each voter in X avoiding conflicts within the sub-committee
- \bullet Let $\mu(\nu)$ denote the candidate representing voter ν
- Let $d(\nu)$ denote the set of candidates ranked higher than $\mu(\nu)$ by voter ν
- Setting $G := \bigcup_{\nu \in X} \mu(\nu)$, $B := \bigcup_{\nu \in X} d(\nu)$ and $D := C \setminus (G \cup B)$ invoke (ℓ, \mathcal{D}) -CC Extension
- To ensure exclusivity of B and G, any guess in which there exists $u, \nu \in G$, such that $u \in d(\nu)$ can be rejected
- If there exists some guess for which (ℓ, \mathcal{D}) -CC Extension yields Yes, return Yes else return No

Motivation 0000	Results Summary	Preliminaries	Tractability results ○○○○○●	Hardness results
(ℓ, \mathcal{D}) -CC Correctness and	Extension via Runtime	Voters		

 \bullet Correctness argument similar to ($\ell,$ SC)-CC Extension via Candidates case

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results ○○○○○●	Hardness results
(ℓ, \mathcal{D}) -CC Correctness and	Extension via Runtime	Voters		

- \bullet Correctness argument similar to ($\ell,$ SC)-CC Extension via Candidates case
- Runtime(XP): $n^kq(n,m),$ where q(n,m) is the time required for $(\ell,\mathcal{D})\text{-}\mathsf{CC}$ Extension

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results ○○○○○●	Hardness results
(ℓ, \mathcal{D}) -CC Correctness and	Extension via d Runtime	Voters		

- Correctness argument similar to (ℓ, SC) -CC Extension via Candidates case
- Runtime(XP): $n^k q(n, m)$, where q(n, m) is the time required for (ℓ, \mathcal{D}) -CC Extension
- Open problem: Smarter guessing could yield an FPT runtime, alternatively W-hardness proof could rule out that possibility

ション ふゆ アメリア メリア しょうくしゃ

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results ●000000
	for 3-crossing 3-crossing profile	; profiles		

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

• Another natural way of generalizing the notion of single-crossing profile

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results ●000000
	for 3-crossing 3-crossing profile	g profiles		

• Another natural way of generalizing the notion of single-crossing profile

r-crossing Profile

There exists an ordering of votes such that the pairwise preference between candidates flips at most r times

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results ●000000
	for 3-crossing 3-crossing profile	; profiles		

• Another natural way of generalizing the notion of single-crossing profile

r-crossing Profile

There exists an ordering of votes such that the pairwise preference between candidates flips at most r times

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

• r = 1 is the familiar single-crossing setting

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results ●000000
	for 3-crossing 3-crossing profile	; profiles		

• Another natural way of generalizing the notion of single-crossing profile

r-crossing Profile

There exists an ordering of votes such that the pairwise preference between candidates flips at most r times

- r = 1 is the familiar single-crossing setting
- Here, we focus on the r = 3 i.e. 3-crossing profiles for CC rule

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0●00000
Hardness Definition of	for 3-crossing	g profiles		

¹¹Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Choice is hard

LSAT

• Variant of SAT where each clause has at most three literals

LSAT is known to be NP-hard ¹¹

¹¹Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Choice is hard

LSAT

- Variant of SAT where each clause has at most three literals
- Literals can be sorted such that every clause has consecutive literals

LSAT is known to be NP-hard ¹¹

¹¹Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Choice is hard

LSAT

- Variant of SAT where each clause has at most three literals
- Literals can be sorted such that every clause has consecutive literals
- Each clause can share at most one literal with another clause

LSAT is known to be NP-hard ¹¹

¹¹Arkin, E.M., Banik, A., Carmi, P., Citovsky, G., Katz, M.J., Mitchell, J.S.B., Simakov, M.: Choice is hard

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 00●0000
Hardness Reduction C	for 3-crossing	g profiles		

• Let φ be the LSAT instance with variables x_1,\ldots,x_n and clauses C_1,\ldots,C_n

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results
Hardness Reduction C	for 3-crossing	g profiles		

• Let φ be the LSAT instance with variables x_1,\ldots,x_n and clauses C_1,\ldots,C_n

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

 $\bullet\,$ Let σ be the LSAT ordering of the literals

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 00●0000
Hardness Reduction C	for 3-crossing	g profiles		

• Let φ be the LSAT instance with variables x_1,\ldots,x_n and clauses C_1,\ldots,C_n

- Let σ be the LSAT ordering of the literals
- For each variable x_i introduce candidates p_i and q_i corresponding to x_i and $\overline{x_i}$

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 00●0000
Hardness Reduction C	for 3-crossing	g profiles		

- Let φ be the LSAT instance with variables x_1,\ldots,x_n and clauses C_1,\ldots,C_n
- Let σ be the LSAT ordering of the literals
- For each variable x_i introduce candidates p_i and q_i corresponding to x_i and $\overline{x_i}$
- Also introduce (n + 1) dummy candidates for each variable

ション ふゆ アメリア メリア しょうくしゃ

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 00●0000
Hardness Reduction C	for 3-crossing	g profiles		

- Let φ be the LSAT instance with variables x_1,\ldots,x_n and clauses C_1,\ldots,C_n
- Let σ be the LSAT ordering of the literals
- For each variable x_i introduce candidates p_i and q_i corresponding to x_i and $\overline{x_i}$
- \bullet Also introduce (n+1) dummy candidates for each variable

ション ふゆ く 山 マ チャット しょうくしゃ

• d[i, j] denotes jth dummy candidate for variable x_i

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 000●000
Hardness Reduction E	for 3-crossing _{xample}	; profiles		

LSAT ordering: x_1 , $\overline{x_2}$, x_3 , $\overline{x_1}$, x_4 , x_2 , $\overline{x_4}$, $\overline{x_3}$

$$\underbrace{\mathsf{LSAT ordering:}}_{C_1} \begin{array}{c} x_1 \ , \ \overline{x_2} \ , \ x_3 \ , \ \overline{x_1} \ , \ x_4 \ , \ x_2 \ , \ \overline{x_4} \ , \ \overline{x_3} \end{array} \\ \underbrace{(x_1 \land \overline{x_2} \land x_3)}_{C_1} \lor \underbrace{(x_3 \land \overline{x_1} \land x_4)}_{C_2} \lor \underbrace{(x_2 \land \overline{x_4} \land \overline{x_3})}_{C_3} \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 0000●00
Hardness Reduction E	for 3-crossing _{xample}	; profiles		

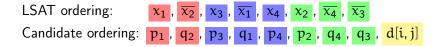
LSAT ordering: x_1 , $\overline{x_2}$, x_3 , $\overline{x_1}$, x_4 , x_2 , $\overline{x_4}$, $\overline{x_3}$ ($x_1 \land \overline{x_2} \land \overline{x_3}$) \lor ($x_3 \land \overline{x_1} \land \overline{x_4}$) \lor ($x_2 \land \overline{x_4} \land \overline{x_3}$)

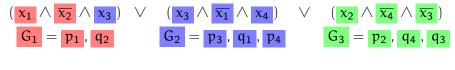
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000€00
Hardness Reduction E	for 3-crossing _{xample}	profiles		

LSAT ordering: x₁, x₂, x₃, x₁, x₄, x₂, x₄, x₃ Candidate ordering: p₁, q₂, p₃, q₁, p₄, p₂, q₄, q₃, d[i, j]

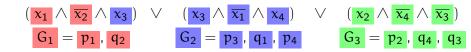
 $(\mathbf{x_1} \land \mathbf{\overline{x_2}} \land \mathbf{x_3}) \lor (\mathbf{x_3} \land \mathbf{\overline{x_1}} \land \mathbf{x_4}) \lor (\mathbf{x_2} \land \mathbf{\overline{x_4}} \land \mathbf{\overline{x_3}})$


Motivation	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000●00
Hardness Reduction E	for 3-crossing _{xample}	; profiles		


LSAT ordering: x₁, x₂, x₃, x₁, x₄, x₂, x₄, x₃ Candidate ordering: p₁, q₂, p₃, q₁, p₄, p₂, q₄, q₃, d[i, j]

$$(\begin{array}{c} \mathbf{x_1} \land \overline{\mathbf{x_2}} \land \mathbf{x_3}) \lor (\mathbf{x_3} \land \overline{\mathbf{x_1}} \land \mathbf{x_4}) \lor (\mathbf{x_2} \land \overline{\mathbf{x_4}} \land \overline{\mathbf{x_3}}) \\ \mathbf{G_1} = \mathbf{p_1}, \mathbf{q_2} \qquad \mathbf{G_2} = \mathbf{p_3}, \mathbf{q_1}, \mathbf{p_4} \qquad \mathbf{G_3} = \mathbf{p_2}, \mathbf{q_4}, \mathbf{q_3}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

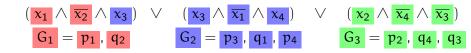


▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

$$v_1: \begin{array}{ccc} \mathsf{G}_1 \end{array} \succ \begin{array}{ccc} \mathsf{G}_2 \end{array} \succ \begin{array}{ccc} \mathsf{G}_3 \end{array} \succ \begin{array}{ccc} \mathsf{D} \end{array}$$

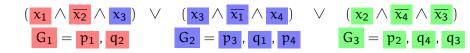
Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results 0000●00
Hardness Reduction E	for 3-crossing _{xample}	; profiles		

LSAT ordering: x_1 , $\overline{x_2}$, x_3 , $\overline{x_1}$, x_4 , x_2 , $\overline{x_4}$, $\overline{x_3}$ Candidate ordering: p_1 , q_2 , p_3 , q_1 , p_4 , p_2 , q_4 , q_3 , d[i, j]



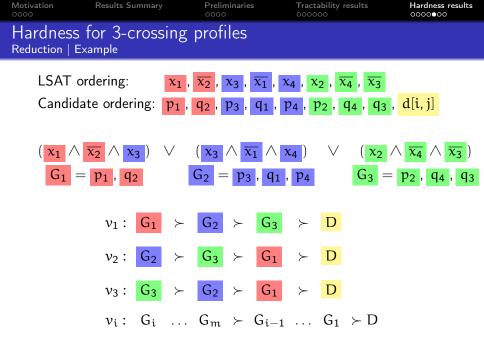
$$\nu_1: \ \mathbf{G_1} \ \succ \ \mathbf{G_2} \ \succ \ \mathbf{G_3} \ \succ \ \mathbf{D}$$

ション ふゆ く 山 マ チャット しょうくしゃ


LSAT ordering: x₁, x₂, x₃, x₁, x₄, x₂, x₄, x₃ Candidate ordering: p₁, q₂, p₃, q₁, p₄, p₂, q₄, q₃, d[i, j]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

LSAT ordering: x_1 , $\overline{x_2}$, x_3 , $\overline{x_1}$, x_4 , x_2 , $\overline{x_4}$, $\overline{x_3}$ Candidate ordering: p_1 , q_2 , p_3 , q_1 , p_4 , p_2 , q_4 , q_3 , d[i, j]


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 0000●00
Hardness Reduction	s for 3-crossing _{Example}	g profiles		

LSAT ordering: x_1 , $\overline{x_2}$, x_3 , $\overline{x_1}$, x_4 , x_2 , $\overline{x_4}$, $\overline{x_3}$ Candidate ordering: p_1 , q_2 , p_3 , q_1 , p_4 , p_2 , q_4 , q_3 , d[i, j]

 $(\begin{array}{c} x_1 \land \overline{x_2} \land x_3 \end{array}) \lor (\begin{array}{c} x_3 \land \overline{x_1} \land x_4 \end{array}) \lor (\begin{array}{c} x_2 \land \overline{x_4} \land \overline{x_3} \end{array}) \\ \hline G_1 = p_1, q_2 \end{array}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Motivation 0000	Results Summary	Preliminaries	Tractability results	Hardness results 00000●0
Hardness Reduction C	for 3-crossing	g profiles		

$\nu_i:G_i\succ G_{i+1}\succ \dots\succ G_{\mathfrak{m}}\succ G_{i-1}\succ \dots\succ G_1\succ D$

Motivation 0000	Results Summary	Preliminaries 0000	Tractability results	Hardness results 00000●0
Hardness Reduction C	for 3-crossing	g profiles		

$$\nu_i:G_i\succ G_{i+1}\succ \cdots\succ G_{\mathfrak{m}}\succ G_{i-1}\succ \cdots\succ G_1\succ D$$

 $\nu_{i,j}: d[i,j] \succ p_i \succ q_i \succ \cdots \succ D \setminus d[i,j]$

$$\nu_i:G_i\succ G_{i+1}\succ \dots\succ G_{\mathfrak{m}}\succ G_{i-1}\succ \dots\succ G_1\succ D$$

$$\nu_{i,j}: d[i,j] \succ p_i \succ q_i \succ \cdots \succ D \setminus d[i,j]$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

A valid committee corresponds to a satisfying assignment when $R\leqslant 2$

$$\nu_i:G_i\succ G_{i+1}\succ \cdots\succ G_{\mathfrak{m}}\succ G_{i-1}\succ \cdots\succ G_1\succ D$$

$$\nu_{i,j}: d[i,j] \succ p_i \succ q_i \succ \cdots \succ D \setminus d[i,j]$$

A valid committee corresponds to a satisfying assignment when $R\leqslant 2$

 \bullet Using dummy candidates we ensure that exactly one of p_i and q_i is in the committee

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

$$\nu_i: G_i \succ G_{i+1} \succ \cdots \succ G_{\mathfrak{m}} \succ G_{i-1} \succ \cdots \succ G_1 \succ D$$

$$\nu_{i,j}: d[i,j] \succ p_i \succ q_i \succ \cdots \succ D \setminus d[i,j]$$

A valid committee corresponds to a satisfying assignment when $R\leqslant 2$

- \bullet Using dummy candidates we ensure that exactly one of p_i and q_i is in the committee
- Careful case analysis shows that resultant profile is 3-crossing

0000 00000 00000 000000 000000 000000 000000	Motivation	Results Summary	Preliminaries	Tractability results	Hardness results
					000000

Thank You !