

Schedule.me Report
Winter 2021

CS 291A - Scalable Internet Services

Winter 2021

Akshay Heda

Andrew Zhang

Chinmay Sonar

Erin Woo
Rakshith Gopalakrishna

Vaishali Surianarayanan

Table of Contents
1. Introduction

2. Features
2.1 Main polls page
2.2 Creating a new poll
2.3 Poll details page
2.4 Adding a user to a poll
2.5 Optimal timeframe selection

3. Data Models
3.1 Timeframe Model
3.2 User Model
3.3 Comment Model
3.4 Poll Model

4. Load Testing
4.1 Setup
4.2 Seeding
4.3 Transactions
4.3 Sessions

Session 1: Create Poll
Session 2: Populating a poll with users
Session 3: Create a user within a poll and populate their availability
Session 4: An existing user enters their availability
Session 5: A user enters comments
Session 6: A user loads a poll

4.4 Baseline:

5. Optimizations:
5.1 Caching
5.2 Pagination
5.3 N+1 Query Optimizations

Original queries
Optimized queries

Indexing
5.4 Horizontal Scaling
5.5 Vertical Scaling
5.6 Cost Analysis

6. Conclusion

∞ Fun Facts!

1. Introduction
In the world of constant online meetings, scheduling virtual meetings has become a new
norm. Often this means an organizer reaching out to each individual to try to find a time that
works. We have also seen the growth of scheduling tools like When2meet and Doodle polls to
try to schedule asynchronously. These solutions, although significant, have incomplete
feature sets.

We are introducing schedule.me, a site that allows users to schedule meetings while
inputting how willing they are to give up the time slot. Our cutting-edge algorithm allows a
group to find the most optimal times to meet. We have built an intuitive service that can scale
to your team or even your entire company!

2. Features
Our application provides the functionality to create polls, which are composed of a timeframe
for which users can input availability.

We describe our application’s customers as two types: An organizer plans an event, creates a
poll, and sends it out to their attendees. A participant is a user that is sent a link to a poll and
is an attendee to the event. The distinction is muddled, as a user can be both an organizer and
a participant, but this is defined as such for clarity as to their motivations.

2.1 Main polls page

The main polls page serves as the entry point into this application. In a real user scenario, the
users would not view all the polls loaded from the database. However, for testing, all polls are
accessible from this page. This is where users can create, edit, and view existing polls.

2.2 Creating a new poll

After clicking “New poll” from the main polls page, the user will be redirected to the new poll
creation page. On this page, the user can indicate the poll title, polling start and end dates,
and the daily polling timeframes (earliest and latest time an availability can be within a day).

After the user clicks “Create Poll”, the application will validate the user’s input before
indicating successful or invalid submission. For a poll to be considered valid, the start date
must be on or before the poll’s end date, and the poll must have a non-empty title.
Additionally, the poll’s daily start time must be before the poll’s daily end time.

2.3 Poll details page
After creating a poll, the poll can be accessed with a unique ID. From the poll’s page, the user
can see the poll details and its associated users and the users’ comments. This page also
serves as an entry point for initializing new poll users.

2.4 Adding a user to a poll

The entry point for initializing new poll users begins with the user entering their name in the
“Add user” section of a poll’s page. After clicking “Create User”, the application will redirect
them to the new user’s details. Here, they can enter their availability as timeframes, with each
timeframe having a specific “tier” or priority: 1 being the most preferred timeframe and 3

being the least preferred. For a timeframe to be valid, the timeframe must be within the poll’s
specified times. Every timeframe must have an indicated tier value.

This page also allows users to write comments that will be visible from the given user page
and its associated poll page.

2.5 Optimal timeframe selection

Our proprietary algorithm uses cutting-edge state-of-the-art technology built by leading
algorithms researchers. Based on the users’ inputted timeframes, we find which 15-minute
time slots are most ideal to hold a meeting. We iterate over each user’s timeframes to count
which time slots have the greatest number of users available. If multiple time slots have the
same number of users available, they are ordered by preference. A 15-minute time slot’s
preference is calculated by summing the squares of each available user’s “tiers”. This places
more weight on avoiding undesirable time slots.

3. Data Models

3.1 Timeframe Model

A timeframe object represents a start and end time in UTC. This object refers to a single
timeframe of availability for a specific user within a poll. It also has an indicated tier value
ranging from 1-3 (1 being the most prioritized) that represents the user’s willingness to give
up that timeframe.

3.2 User Model
A user object represents a participant in a poll. Anyone with a link to the poll can add users,
whether that be the poll organizer or external participants. Each user belongs to a poll.

3.3 Comment Model

A comment object represents additional information that a user can specify regarding their
availability. It is created by a user in the user’s specific page. It can then be viewed either in
the user’s page or in the poll’s page, where all comments by all users of the poll are visible.

3.4 Poll Model
A poll object is the base model for this application and is referenced by it’s poll id. Upon
creation, it’s initialized with a name and start/end days that represent the time that the
organizer would like to poll from. The daily start and end times represent the window of time
each day that users can indicate their availability from.

4. Load Testing

4.1 Setup
We will start by defining a transaction as it is in Tsung: a single action against the application.
We then define a session as a set of transactions that model a series of actions a user would
commonly perform. We set up our testing script to have transactions be associated with
specific sessions to compare transaction time across sessions.

To make the sessions more realistic, we set up random access for workflows involving
accessing polls/users. We added routes and controllers that map a random number generated
in tsung to a valid pre-seeded poll uuid or user id.

4.2 Seeding
Every test is initialized with a seeded database. As part of seeding, we create 1000 polls,
10000 users, 20000 timeframes, and 10000 comments. This was to make sure that our
database already had data and that we could randomly access polls and users to test response
times.

We leveraged the bulk insert feature of Rails to accomplish faster insertion. Seeding the
development database was easy and could be achieved by the rake db:seed command. For the
production database, Elastic Beanstalk provides an interface to run commands before the
application is deployed in the staging phase. However, adding the db:seed command to this
interface resulted in a failed deployment. We were able to work around this by running the
db:seed command inside the EC2 instances of the deployed application using required
environment variables. We note that we were able to automate this process with the help of a
script.

4.3 Transactions

For our workflows, we defined the following transactions representing primitive requests:
create_poll: POST request to create a poll
create_user: POST request to create a user associated with a poll
create_timeframe: POST request to create a timeframe associated with a user
create_comment: POST request to create a comment associated with a user
view_poll: GET request to view a specific poll page
view_user: GET request to view a specific user page

These are the transactions that are contained within the sessions described in the next
section.

4.3 Sessions

We defined the following sessions:

Session 1: Create Poll

This flow represents a user’s entry point when using the application. After creating a poll with
their event details, the user is redirected to the poll’s page. Using the link to the poll’s page,
the organizer can send the link to participants who can add themselves as users and indicate
their availability.

Session 2: Populating a poll with users

The scenario represents an organizer who created individualized pages for each participant so
that they can send a specific link to each participant. This also tests a similar kind of load that
involves many users adding themselves to a poll right after a link is sent out.

Session 3: Create a user within a poll and populate their availability

This scenario represents the most common way a user is driven to our application. They are
sent a link to a poll by a friend or peer who is organizing an event, and asked to enter their
availability. They will start on the page for a poll, and will add themselves to it and provide
information about when they are free.

Session 4: An existing user enters their availability

This scenario represents an edge case, where availability has changed and a user must amend
their information. Another way this scenario might occur is if an organizer created user pages
for everyone they are inviting.

Session 5: A user enters comments

Comments allow users to enter details about their availability. Users are able to view the
comments they’ve entered from their user page. All the associated comments for a poll are
visible from the poll’s main page.

Session 6: A user loads a poll

This is one of the most common scenarios, which involves a participant or organizer viewing a
poll to find the best times to have an event. They can also view other participants’ availability.
When running a poll, an organizer will regularly check how many people have filled out the
poll and consider which times are the most optimal.

4.4 Baseline:

We ran baselines against ec2’s m5.large single instances for both the application and
database servers on AWS ElasticBeanstalk. The database was also seeded as described in the
Seeding section.

We test with 7 arrivals phases, each phase lasting for 60 seconds. We start with 2 users per
second in the first phase and double the number of users in each subsequent phase; hence,
ending with 128 users per second at the end of the test. In each phase, an arbitrary user
performs one of the six sessions described in the previous section. The exact session
performed among the six sessions is sampled randomly through a predefined weighting
distribution on the sessions.

We defined weighting based on our expectations of how a real user would use this
application. When using similar applications, such as when2meet, we usually fill out our
availability once and check back multiple times for updates to schedule a meeting. So, we
expect a user to more frequently view a poll (Session 6) to see optimal times rather than
creating or modifying a poll. As such, we weighted this read-heavy workflow with 10x the
weight of all other flows.

After running our baseline load test, we obtained the following results. The transactions in
the graph are labeled with the session number described in the previous section. Looking at
the mean transaction times, we saw that the view_poll transactions consistently took longer
than other transactions. It is difficult to see in the graph due to the scale, but for the first 200
seconds, the view_poll transactions took ~40 ms while all other transactions stayed around
10-20 ms.

At ~240 seconds, the start of phase 5 (arrival rate 32), we saw a large increase in mean
transaction time. This is quickly followed by a decrease in mean transaction time most likely
due to the large increase in HTTP error codes shown below.

When looking at the HTTP response codes over time, we can see mostly 200 OK and 302
Redirect codes up until 270 seconds. We have a mix of 302s and 200s because several of our
workflows create a resource and are directly redirected to it (ex. Creating a user).

At ~270 seconds, in phase 5 (arrival rate 32), we start seeing a sudden upshot in 502 errors.
This is shortly followed by an increase in 4XX errors. Finally, at the data points from 360
seconds, when phase 7 (arrival rate 128) begins, we see huge increases in 502 and 4XX errors.

We believe that our 4XX errors are mostly a result of the 5XX errors, as we are trying to
redirect to resources that the database does not have due to failed creations. As such, this
data tells us that we are mostly being database throttled. At higher throughputs, our
database is not able to keep up, and is returning 502 upstream server errors to the client.

5. Optimizations:
Based on the baseline results from our load tests, we can see that loading the poll data takes
significantly longer compared to other requests. We believed that these results were due to
bottlenecks when making requests to the database server. In order to address this potential
issue, we implemented server-side query optimizations that would reduce the overall load on
the database.

5.1 Caching

One of the first optimization strategies we looked into was server-side caching. The logic for
doing so was straightforward, as caching the poll views and associated partials would reduce
the number of necessary requests. Additionally, because our optimal time algorithm requires
expensive computation, those results were cached as well. This all occurs on the view poll
page. Because of the structure of our models, we used Russian Doll caching to store the view
data in an in-memory cache on the application server. The size of our in-memory cache was
1024 megabytes.

Initially, the maximum duration for a transaction occurred at around ~270 seconds into running the
tests with a transaction time of around 1600 ms. The following test shows the results of caching
the poll data, view partials, and optimal timeframes. The transaction times significantly improved
by nearly two-fold, with the view poll operation reaching a maximum transaction time of ~1000 ms.
Additionally, it took another 55 seconds until the server began to overload. Because the poll view
page is where most of the caching occurs, these results match our goals of reducing the load at this
point in the user flow.

Baseline - HTTP Response Codes

Cache Optimized - HTTP Response Codes

When comparing response codes across baseline versus cache optimized, we can see
significant improvement. In the cache optimized chart, we don’t see 502 errors until 310
seconds, a full 40 seconds and one phase further along than the same spike in the baseline.
We do still see the same spike at 360 seconds when phase 7 of arrival begins. Even amongst
the spikes though, the rate of errors is ~20% lower for cache optimized. We see a max error
rate of ~300 5XX errors in our baseline, compared to ~255 after optimizing.

Caching had the largest effect on the view_poll transactions, as they are able to utilize the
benefits caching provides. We saw a significant decrease in mean time for this transaction in
the earlier phases of our load test, as it dropped from ~40 ms to ~25 ms. In the latter phases,
decreasing these transaction times contributed to lower transaction times and error rates
overall. Because of these improvements, we believe caching is an effective means of
optimization for our service.

5.2 Pagination

The aim in pagination is to decrease the volume of data queried from the database in an
individual query. Additionally, pagination also decreases the amount of time required to
render long lists fetched from the database. We paginate the users and the comments, which
are displayed on the poll view page to show five users and five polls per page.

When comparing the baseline versus pagination optimized transaction durations, we see little
to no improvement. Both graphs show spikes in transaction time starting at ~240 seconds. We
see similar spikes to around 1500ms for the most expensive transactions.

We can see that improvements in both transaction times and time into failure is minimal when
using pagination. The volume of data returned upon requesting users and comments for a poll
is not heavy enough for pagination to yield any improvements since realistically we expect
about 10 users per poll and 10 timeframes per user.

5.3 N+1 Query Optimizations

N+1 query optimization is a common optimization applied to ORMs to mitigate the N+1 select
problem. This problem refers to the naive approach the ORMs take when selecting from
tables that have a one-many relationship. For instance, in our web application, a poll can have
many users. Each user can have multiple timeframes that they are available for within the poll
and multiple comments about the poll. In the page that displays a particular poll’s details, the
users belonging to a poll along with their timeframes and comments are retrieved from the
database.

A naive way to do this would be to first fetch all users belonging to a poll, fetch the
timeframes for each such user, and then fetch comments for each such user. This requires N+1
select queries for each user depending on the number of timeframes they add to a poll. Two
such scenarios for our application are shown below.

Original queries
Scenario 1:
Accessing timeframes for each user in a given poll while (i) computing optimal times and (ii)
rendering the polls page. This occurs at ‘/polls/<poll-id>’.

Scenario 2:
Accessing the users corresponding to each comment in a given poll while rendering the polls
page. This also occurs at ‘/polls/<poll-id>’.

SELECT "polls".* FROM "polls" WHERE "polls"."id" = $1 LIMIT $2
SELECT "users".* FROM "users" WHERE "users"."poll_id" = $1
for user_id:

SELECT "time_frames".* FROM "time_frames" WHERE
"time_frames"."user_id" = $1

SELECT "comments".* FROM "comments" INNER JOIN "users" ON
"comments"."user_id" = "users"."id" WHERE "users"."poll_id" = $1

Optimized queries
An optimization here would be to reduce the number of select statements to 1 by making use
of the SQL IN operator. This reduces the number of database queries. In Rails this is achieved
by using the ‘includes’ query method. The optimized SQL queries for both the scenarios are
shown below.

Scenario 1:

For both (i) and (ii).

Scenario 2:

We now present our results by means of two plots. Both help us differentiate between mean
transaction duration times before and after the optimization. The first one refers to the mean
transaction time for all transactions combined and the other one refers to the mean
transaction time for just the view_poll transaction.

for user_id:
SELECT "users".* FROM "users" WHERE "users"."id" = $1 LIMIT $2

SELECT "polls".* FROM "polls" WHRE "polls"."id" = $1 LIMIT $2
SELECT "users".* FROM "users" WHERE "users"."poll_id" = $1
SELECT "time_frames".* FROM "time_frames" WHERE "time_frames"."user_id" in
($1, $2, ...)

SELECT "comments".* FROM "comments" INNER JOIN "users" ON
"comments"."user_id" = "users"."id" WHERE "users"."poll_id" = $1
SELECT "users".* FROM "users" WHERE "users"."id" in ($1, $2, ...)

We observed that n+1-query optimization helped reduce our peak transaction times by nearly
a factor of 20%. It can be observed that the view_poll transaction has higher gains because all
the 3-places that we applied this optimization were relevant to this transaction. The gains
were as expected because Rails by default uses naive queries that could be optimized.

Indexing

We observed that our web application runs SELECT and JOIN queries when we want to view
the details of a particular poll. In order to minimize the cost of these queries, we realized that
we might have to index the columns being used in the queries. In particular, the columns used
were foreign keys. However, Rails adds an index to the foreign keys by default.

5.4 Horizontal Scaling

Two Servers:

Four Servers:

Eight Servers:

Summary graph:

As a final measure, we spent some time looking at horizontal scaling on m5 instances, as this
reduces overall bottlenecking. This was one of the most effective “optimizations”. We see at
two servers that we spike in transaction time at 300 seconds, which would by phase 6. By four
servers, we see the similar spike at 360 seconds, or phase 7. Finally at eight servers, we see
some small increases in response time at 360 seconds, but significantly smaller than previous.
We also saw a reducing number of 4XX and 5XX response times as we increased the number
of servers.

5.5 Vertical Scaling
Cloud Vertical Scaling refers to adding more CPU, memory, or I/O resources to an existing
server, or replacing one server with a more powerful server. Amazon Web Services (AWS)
vertical scaling can be accomplished by changing instance sizes. AWS cloud services have
many different instance sizes, so scaling vertically is possible for everything from EC2
instances to RDS databases. For this project, we chose to go with m5 instances.

The instances that we chose are m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge, and m5.8xlarge
for both the EC2 instances and the database.

Initially there are many HTTP 5XX responses but as we increase the instance sizes, the 5XXs
decrease each time and finally disappear in m5.4xlarge and m5.8xlarge. This can be observed
in the figure below.

We also observed that as we increased instance sizes, the peak mean transaction duration
time for all transactions decreased substantially. Also, using m5.4xlarge and m5.8xlarge
instances stabilized response times. This can be observed in the following figure:

We note that just using an m5.4xlarge instance helps us get nearly 100% speedup with zero
HTTP 500 responses. Also observe that the mean transaction duration times of m5.4xlarge
and m5.8xlarge instances are very similar and the HTTP 500 responses are absent. This helps
us conclude that using m5.4xlarge instances are sufficient and we need not scale more
vertically (for the load we tested). In conclusion, we can view m5.4xlarge instances as a cut off
point for vertically scaling our application.

5.6 Cost Analysis

As a service, we must consider the cost per user of running our service. To begin, our baseline
of a m5.large instance costs $0.096 per hour.

We define failure as a sizable increase in response times on transactions. Costs are based on
current ec2 pricing.

Based on response times, it seems that horizontally scaling (at least to the point we tested),
works slightly better than vertically scaling. This is most obvious in comparing the 8x m5.large
versus m5.4xlarge, where the horizontal scaled instances provide max response times of
100ms, compared to 120 ms for vertically scaled. Up until that point, we see that vertically
scaled servers have better response times during failure, but as a whole, both horizontal and
vertical scaling have similar metrics per price point.

6. Conclusion
In this project, we gained the skills to build [cs291] scalable internet services. This project
required us to build a full-stack web application using the Ruby on Rails framework. We
designed models, built a basic user interface, architected a service that would provide value
to users like any other fully-scaled application would. Learning how to load test in Tsung gave

Type Failure Time Phase/Arrival Rate Cost

m5.large 240 5/32 $0.096

2x m5.large 300 6/64 $0.192

4x m5.large 360 7/128 $0.384

8x m5.large 360ish? 7/128+ $0.768

m5.xlarge 300 6/64 $0.192

m5.2xlarge 360 7/128 $0.384

m5.4xlarge 360ish? 7/128 $0.768

m5.8xlarge N/A 7/128++ $1.536

us insight into how larger-scaled applications would require reiteration and refinement in
order to adapt to a growing user base and evolving user needs. By using modern tooling such
as AWS ec2 and Elastic Beanstalk, we were able to deploy and test in an environment similar
to that of industry.

To approach optimization strategies, we increased the load on our application in increments
in order to find which parts of the user flow bottlenecked our overall performance. After
analyzing our tests and implementing optimization techniques, we found that caching and
N+1 optimizations provided significant gains while pagination offered minimal improvements.

For the future, we would love to clean up our application’s user experience and build flows
that would more accurately model use cases and user flows. We would also love to try
building this setup on a non-relational database to allow for easier horizontal scaling. Finally,
we would optimize our database by archiving old user data to reduce strain.

Thank you for coming to our TED talk.

∞ Fun Facts!

- Ruby has a date class, a time class, and a datetime class. I am still not sure what the
difference is.

- The average age of our team is slightly over 22. We have one member that is legally
unable to buy alcohol

- The pagination library we used, named Kaminari, means thunder in japanese.
- Our application was almost named when3meet! What a travesty that would have been.
- I was disallowed from submitting this report in Comic Sans
- Our team mascot is Erin

