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1. Introduction 
In the world of constant online meetings, scheduling virtual meetings has become a new 
norm. Often this means an organizer reaching out to each individual to try to find a time that 
works. We have also seen the growth of scheduling tools like When2meet and Doodle polls to 
try to schedule asynchronously. These solutions, although significant, have incomplete 
feature sets.  
 
We are introducing schedule.me, a site that allows users to schedule meetings while 
inputting how willing they are to give up the time slot. Our cutting-edge algorithm allows a 
group to find the most optimal times to meet. We have built an intuitive service that can scale 
to your team or even your entire company! 
 

2. Features 
Our application provides the functionality to create polls, which are composed of a timeframe 
for which users can input availability.  
 
We describe our application’s customers as two types: An organizer plans an event, creates a 
poll, and sends it out to their attendees. A participant is a user that is sent a link to a poll and 
is an attendee to the event. The distinction is muddled, as a user can be both an organizer and 
a participant, but this is defined as such for clarity as to their motivations.  

2.1 Main polls page 

The main polls page serves as the entry point into this application. In a real user scenario, the 
users would not view all the polls loaded from the database. However, for testing, all polls are 
accessible from this page. This is where users can create, edit, and view existing polls. 
 
 

 

 



 

2.2 Creating a new poll 

After clicking “New poll” from the main polls page, the user will be redirected to the new poll 
creation page. On this page, the user can indicate the poll title, polling start and end dates, 
and the daily polling timeframes (earliest and latest time an availability can be within a day).  
 
After the user clicks “Create Poll”, the application will validate the user’s input before 
indicating successful or invalid submission. For a poll to be considered valid, the start date 
must be on or before the poll’s end date, and the poll must have a non-empty title. 
Additionally, the poll’s daily start time must be before the poll’s daily end time. 

 
 

2.3 Poll details page 
After creating a poll, the poll can be accessed with a unique ID. From the poll’s page, the user 
can see the poll details and its associated users and the users’ comments. This page also 
serves as an entry point for initializing new poll users. 

  

 



 

 

2.4 Adding a user to a poll 

The entry point for initializing new poll users begins with the user entering their name in the 
“Add user” section of a poll’s page. After clicking “Create User”, the application will redirect 
them to the new user’s details. Here, they can enter their availability as timeframes, with each 
timeframe having a specific “tier” or priority: 1 being the most preferred timeframe and 3 

 



 

being the least preferred. For a timeframe to be valid, the timeframe must be within the poll’s 
specified times. Every timeframe must have an indicated tier value. 
 
This page also allows users to write comments that will be visible from the given user page 
and its associated poll page. 
 

2.5 Optimal timeframe selection 

Our proprietary algorithm uses cutting-edge state-of-the-art technology built by leading 
algorithms researchers. Based on the users’ inputted timeframes, we find which 15-minute 
time slots are most ideal to hold a meeting. We iterate over each user’s timeframes to count 
which time slots have the greatest number of users available. If multiple time slots have the 
same number of users available, they are ordered by preference. A 15-minute time slot’s 
preference is calculated by summing the squares of each available user’s “tiers”. This places 
more weight on avoiding undesirable time slots. 
 

 



 

3. Data Models 

 

3.1 Timeframe Model 

A timeframe object represents a start and end time in UTC. This object refers to a single 
timeframe of availability for a specific user within a poll. It also has an indicated tier value 
ranging from 1-3 (1 being the most prioritized) that represents the user’s willingness to give 
up that timeframe.  

3.2 User Model 
A user object represents a participant in a poll. Anyone with a link to the poll can add users, 
whether that be the poll organizer or external participants. Each user belongs to a poll. 
 

 



 

3.3 Comment Model 

A comment object represents additional information that a user can specify regarding their 
availability. It is created by a user in the user’s specific page. It can then be viewed either in 
the user’s page or in the poll’s page, where all comments by all users of the poll are visible. 

3.4 Poll Model 
A poll object is the base model for this application and is referenced by it’s poll id. Upon 
creation, it’s initialized with a name and start/end days that represent the time that the 
organizer would like to poll from. The daily start and end times represent the window of time 
each day that users can indicate their availability from.  

 

4. Load Testing 

4.1 Setup 
We will start by defining a transaction as it is in Tsung: a single action against the application. 
We then define a session as a set of transactions that model a series of actions a user would 
commonly perform. We set up our testing script to have transactions be associated with 
specific sessions to compare transaction time across sessions.  
 
To make the sessions more realistic, we set up random access for workflows involving 
accessing polls/users. We added routes and controllers that map a random number generated 
in tsung to a valid pre-seeded poll uuid or user id.  

4.2 Seeding 
Every test is initialized with a seeded database. As part of seeding, we create 1000 polls, 
10000 users, 20000 timeframes, and 10000 comments. This was to make sure that our 
database already had data and that we could randomly access polls and users to test response 
times.  
 
We leveraged the bulk insert feature of Rails to accomplish faster insertion. Seeding the 
development database was easy and could be achieved by the rake db:seed command. For the 
production database, Elastic Beanstalk provides an interface to run commands before the 
application is deployed in the staging phase. However, adding the db:seed command to this 
interface resulted in a failed deployment. We were able to work around this by running the 
db:seed command inside the EC2 instances of the deployed application using required 
environment variables. We note that we were able to automate this process with the help of a 
script. 

 



 

4.3 Transactions 

For our workflows, we defined the following transactions representing primitive requests: 
create_poll: POST request to create a poll 
create_user: POST request to create a user associated with a poll 
create_timeframe: POST request to create a timeframe associated with a user 
create_comment: POST request to create a comment associated with a user 
view_poll: GET request to view a specific poll page 
view_user: GET request to view a specific user page 

 
These are the transactions that are contained within the sessions described in the next 
section. 

4.3 Sessions 

We defined the following sessions: 

Session 1: Create Poll 

 
This flow represents a user’s entry point when using the application. After creating a poll with 
their event details, the user is redirected to the poll’s page. Using the link to the poll’s page, 
the organizer can send the link to participants who can add themselves as users and indicate 
their availability. 

Session 2: Populating a poll with users 

 
The scenario represents an organizer who created individualized pages for each participant so 
that they can send a specific link to each participant. This also tests a similar kind of load that 
involves many users adding themselves to a poll right after a link is sent out. 
 

 



 

Session 3: Create a user within a poll and populate their availability 

 
This scenario represents the most common way a user is driven to our application. They are 
sent a link to a poll by a friend or peer who is organizing an event, and asked to enter their 
availability. They will start on the page for a poll, and will add themselves to it and provide 
information about when they are free.  

Session 4: An existing user enters their availability 

 
This scenario represents an edge case, where availability has changed and a user must amend 
their information. Another way this scenario might occur is if an organizer created user pages 
for everyone they are inviting.  
 

Session 5: A user enters comments 

 
Comments allow users to enter details about their availability. Users are able to view the 
comments they’ve entered from their user page. All the associated comments for a poll are 
visible from the poll’s main page.  
 

 



 

Session 6: A user loads a poll 

 
This is one of the most common scenarios, which involves a participant or organizer viewing a 
poll to find the best times to have an event. They can also view other participants’ availability. 
When running a poll, an organizer will regularly check how many people have filled out the 
poll and consider which times are the most optimal. 

4.4 Baseline: 

We ran baselines against ec2’s m5.large single instances for both the application and 
database servers on AWS ElasticBeanstalk. The database was also seeded as described in the 
Seeding section. 
 
We test with 7 arrivals phases, each phase lasting for 60 seconds. We start with 2 users per 
second in the first phase and double the number of users in each subsequent phase; hence, 
ending with 128 users per second at the end of the test. In each phase, an arbitrary user 
performs one of the six sessions described in the previous section. The exact session 
performed among the six sessions is sampled randomly through a predefined weighting 
distribution on the sessions. 
 
We defined weighting based on our expectations of how a real user would use this 
application. When using similar applications, such as when2meet, we usually fill out our 
availability once and check back multiple times for updates to schedule a meeting. So, we 
expect a user to more frequently view a poll (Session 6) to see optimal times rather than 
creating or modifying a poll. As such, we weighted this read-heavy workflow with 10x the 
weight of all other flows. 
 
 
 
 

 



 

 
 
 
After running our baseline load test, we obtained the following results. The transactions in 
the graph are labeled with the session number described in the previous section. Looking at 
the mean transaction times, we saw that the view_poll transactions consistently took longer 
than other transactions. It is difficult to see in the graph due to the scale, but for the first 200 
seconds, the view_poll transactions took ~40 ms while all other transactions stayed around 
10-20 ms.  
 
At ~240 seconds, the start of phase 5 (arrival rate 32), we saw a large increase in mean 
transaction time. This is quickly followed by a decrease in mean transaction time most likely 
due to the large increase in HTTP error codes shown below. 

 



 

 
 
When looking at the HTTP response codes over time, we can see mostly 200 OK and 302 
Redirect codes up until 270 seconds. We have a mix of 302s and 200s because several of our 
workflows create a resource and are directly redirected to it (ex. Creating a user).  
 
At ~270 seconds, in phase 5 (arrival rate 32), we start seeing a sudden upshot in 502 errors. 
This is shortly followed by an increase in 4XX errors. Finally, at the data points from 360 
seconds, when phase 7 (arrival rate 128) begins, we see huge increases in 502 and 4XX errors.  
 
We believe that our 4XX errors are mostly a result of the 5XX errors, as we are trying to 
redirect to resources that the database does not have due to failed creations. As such, this 
data tells us that we are mostly being database throttled. At higher throughputs, our 
database is not able to keep up, and is returning 502 upstream server errors to the client.  
 
 

 



 

5. Optimizations: 
Based on the baseline results from our load tests, we can see that loading the poll data takes 
significantly longer compared to other requests. We believed that these results were due to 
bottlenecks when making requests to the database server. In order to address this potential 
issue, we implemented server-side query optimizations that would reduce the overall load on 
the database. 

5.1 Caching 

One of the first optimization strategies we looked into was server-side caching. The logic for 
doing so was straightforward, as caching the poll views and associated partials would reduce 
the number of necessary requests. Additionally, because our optimal time algorithm requires 
expensive computation, those results were cached as well. This all occurs on the view poll 
page. Because of the structure of our models, we used Russian Doll caching to store the view 
data in an in-memory cache on the application server. The size of our in-memory cache was 
1024 megabytes.  
 
 

 
 
Initially, the maximum duration for a transaction occurred at around ~270 seconds into running the 
tests with a transaction time of around 1600 ms. The following test shows the results of caching 
the poll data, view partials, and optimal timeframes. The transaction times significantly improved 
by nearly two-fold, with the view poll operation reaching a maximum transaction time of ~1000 ms. 
Additionally, it took another 55 seconds until the server began to overload. Because the poll view 
page is where most of the caching occurs, these results match our goals of reducing the load at this 
point in the user flow.  
 
 

 



 

Baseline - HTTP Response Codes 

 
 
Cache Optimized - HTTP Response Codes 

 
 

 



 

When comparing response codes across baseline versus cache optimized, we can see 
significant improvement. In the cache optimized chart, we don’t see 502 errors until 310 
seconds, a full 40 seconds and one phase further along than the same spike in the baseline. 
We do still see the same spike at 360 seconds when phase 7 of arrival begins. Even amongst 
the spikes though, the rate of errors is ~20% lower for cache optimized. We see a max error 
rate of ~300 5XX errors in our baseline, compared to ~255 after optimizing.  
 
Caching had the largest effect on the view_poll transactions, as they are able to utilize the 
benefits caching provides. We saw a significant decrease in mean time for this transaction in 
the earlier phases of our load test, as it dropped from ~40 ms to ~25 ms. In the latter phases, 
decreasing these transaction times contributed to lower transaction times and error rates 
overall. Because of these improvements, we believe caching is an effective means of 
optimization for our service. 

5.2 Pagination 

The aim in pagination is to decrease the volume of data queried from the database in an 
individual query. Additionally, pagination also decreases the amount of time required to 
render long lists fetched from the database. We paginate the users and the comments, which 
are displayed on the poll view page to show five users and five polls per page.  
 

 
 
 
When comparing the baseline versus pagination optimized transaction durations, we see little 
to no improvement. Both graphs show spikes in transaction time starting at ~240 seconds. We 
see similar spikes to around 1500ms for the most expensive transactions.  
 
 

 



 

We can see that improvements in both transaction times and time into failure is minimal when 
using pagination. The volume of data returned upon requesting users and comments for a poll 
is not heavy enough for pagination to yield any improvements since realistically we expect 
about 10 users per poll and 10 timeframes per user. 
 

5.3 N+1 Query Optimizations 
 
N+1 query optimization is a common optimization applied to ORMs to mitigate the N+1 select 
problem. This problem refers to the naive approach the ORMs take when selecting from 
tables that have a one-many relationship. For instance, in our web application, a poll can have 
many users. Each user can have multiple timeframes that they are available for within the poll 
and multiple comments about the poll. In the page that displays a particular poll’s details, the 
users belonging to a poll along with their timeframes and comments are retrieved from the 
database.  
 
A naive way to do this would be to first fetch all users belonging to a poll, fetch the 
timeframes for each such user, and then fetch comments for each such user. This requires N+1 
select queries for each user depending on the number of timeframes they add to a poll. Two 
such scenarios for our application are shown below.  
 

Original queries 
Scenario 1: 
Accessing timeframes for each user in a given poll while (i) computing optimal times and (ii) 
rendering the polls page. This occurs at ‘/polls/<poll-id>’. 
 

 
 

 
Scenario 2: 
Accessing the users corresponding to each comment in a given poll while rendering the polls 
page. This also occurs at ‘/polls/<poll-id>’. 
 

 

SELECT "polls".* FROM "polls" WHERE "polls"."id" = $1 LIMIT $2 
SELECT "users".* FROM "users" WHERE "users"."poll_id" = $1 
for user_id: 

SELECT "time_frames".* FROM "time_frames" WHERE 
"time_frames"."user_id" = $1 

SELECT "comments".* FROM "comments" INNER JOIN "users" ON 
"comments"."user_id" = "users"."id" WHERE "users"."poll_id" = $1 



 

 

Optimized queries 
An optimization here would be to reduce the number of select statements to 1 by making use 
of the SQL IN operator. This reduces the number of database queries. In Rails this is achieved 
by using the ‘includes’ query method. The optimized SQL queries for both the scenarios are 
shown below. 
 
 
Scenario 1:  
 
For both (i) and (ii). 

 
 
Scenario 2: 

 
 
We now present our results by means of two plots. Both help us differentiate between mean 
transaction duration times before and after the optimization. The first one refers to the mean 
transaction time for all transactions combined and the other one refers to the mean 
transaction time for just the view_poll transaction.  
 

 

for user_id: 
SELECT "users".* FROM "users" WHERE "users"."id" = $1 LIMIT $2 

SELECT "polls".* FROM "polls" WHRE "polls"."id" = $1 LIMIT $2 
SELECT "users".* FROM "users" WHERE "users"."poll_id" = $1 
SELECT "time_frames".* FROM "time_frames" WHERE "time_frames"."user_id" in 
($1, $2, ...) 

SELECT "comments".* FROM "comments" INNER JOIN "users" ON 
"comments"."user_id" = "users"."id" WHERE "users"."poll_id" = $1 
SELECT "users".* FROM "users" WHERE "users"."id" in ($1, $2, ...) 



 

 
 

 
We observed that n+1-query optimization helped reduce our peak transaction times by nearly 
a factor of 20%. It can be observed that the view_poll transaction has higher gains because all 
the 3-places that we applied this optimization were relevant to this transaction. The gains 
were as expected because Rails by default uses naive queries that could be optimized. 
 

 



 

Indexing 

We observed that our web application runs SELECT and JOIN queries when we want to view 
the details of a particular poll. In order to minimize the cost of these queries, we realized that 
we might have to index the columns being used in the queries. In particular, the columns used 
were foreign keys. However, Rails adds an index to the foreign keys by default.  
 

   

 



 

5.4 Horizontal Scaling 

 
Two Servers: 

 

 



 

 
Four Servers: 

 

 



 

 
Eight Servers: 

 

 



 

 
 
Summary graph: 

 
 
As a final measure, we spent some time looking at horizontal scaling on m5 instances, as this 
reduces overall bottlenecking. This was one of the most effective “optimizations”. We see at 
two servers that we spike in transaction time at 300 seconds, which would by phase 6. By four 
servers, we see the similar spike at 360 seconds, or phase 7. Finally at eight servers, we see 
some small increases in response time at 360 seconds, but significantly smaller than previous. 
We also saw a reducing number of 4XX and 5XX response times as we increased the number 
of servers.  

5.5 Vertical Scaling 
Cloud Vertical Scaling refers to adding more CPU, memory, or I/O resources to an existing 
server, or replacing one server with a more powerful server. Amazon Web Services (AWS) 
vertical scaling can be accomplished by changing instance sizes. AWS cloud services have 
many different instance sizes, so scaling vertically is possible for everything from EC2 
instances to RDS databases. For this project, we chose to go with m5 instances.  
 
The instances that we chose are m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge, and m5.8xlarge 
for both the EC2 instances and the database. 
 
Initially there are many HTTP 5XX responses but as we increase the instance sizes, the 5XXs 
decrease each time and finally disappear in m5.4xlarge and m5.8xlarge. This can be observed 
in the figure below. 

 



 

 
We also observed that as we increased instance sizes, the peak mean transaction duration 
time for all transactions decreased substantially. Also, using m5.4xlarge and m5.8xlarge 
instances stabilized response times. This can be observed in the following figure: 
 

 
 

 



 

We note that just using an m5.4xlarge instance helps us get nearly 100% speedup with zero 
HTTP 500 responses. Also observe that the mean transaction duration times of m5.4xlarge 
and m5.8xlarge instances are very similar and the HTTP 500 responses are absent. This helps 
us conclude that using m5.4xlarge instances are sufficient and we need not scale more 
vertically (for the load we tested). In conclusion, we can view m5.4xlarge instances as a cut off 
point for vertically scaling our application. 

5.6 Cost Analysis 

As a service, we must consider the cost per user of running our service. To begin, our baseline 
of a m5.large instance costs $0.096 per hour.  
 
We define failure as a sizable increase in response times on transactions. Costs are based on 
current ec2 pricing.  
 

 
Based on response times, it seems that horizontally scaling (at least to the point we tested), 
works slightly better than vertically scaling. This is most obvious in comparing the 8x m5.large 
versus m5.4xlarge, where the horizontal scaled instances provide max response times of 
100ms, compared to 120 ms for vertically scaled. Up until that point, we see that vertically 
scaled servers have better response times during failure, but as a whole, both horizontal and 
vertical scaling have similar metrics per price point.  

6. Conclusion 
In this project, we gained the skills to build [cs291] scalable internet services. This project 
required us to build a full-stack web application using the Ruby on Rails framework. We 
designed models, built a basic user interface, architected a service that would provide value 
to users like any other fully-scaled application would. Learning how to load test in Tsung gave 

 

Type  Failure Time  Phase/Arrival Rate  Cost 

m5.large  240  5/32  $0.096 

2x m5.large  300  6/64  $0.192 

4x m5.large  360  7/128  $0.384 

8x m5.large  360ish?  7/128+  $0.768 

m5.xlarge  300  6/64  $0.192 

m5.2xlarge  360  7/128  $0.384 

m5.4xlarge  360ish?  7/128  $0.768 

m5.8xlarge  N/A  7/128++  $1.536 



 

us insight into how larger-scaled applications would require reiteration and refinement in 
order to adapt to a growing user base and evolving user needs. By using modern tooling such 
as AWS ec2 and Elastic Beanstalk, we were able to deploy and test in an environment similar 
to that of industry. 
 
To approach optimization strategies, we increased the load on our application in increments 
in order to find which parts of the user flow bottlenecked our overall performance. After 
analyzing our tests and implementing optimization techniques, we found that caching and 
N+1 optimizations provided significant gains while pagination offered minimal improvements. 
 
For the future, we would love to clean up our application’s user experience and build flows 
that would more accurately model use cases and user flows. We would also love to try 
building this setup on a non-relational database to allow for easier horizontal scaling. Finally, 
we would optimize our database by archiving old user data to reduce strain. 
 
Thank you for coming to our TED talk. 
 
 
 

∞ Fun Facts! 

- Ruby has a date class, a time class, and a datetime class. I am still not sure what the 
difference is. 

- The average age of our team is slightly over 22. We have one member that is legally 
unable to buy alcohol  

- The pagination library we used, named Kaminari, means thunder in japanese.  
- Our application was almost named when3meet! What a travesty that would have been. 
- I was disallowed from submitting this report in Comic Sans 
- Our team mascot is Erin 

 
 
 
 
 
 
 
 
 
 
 
 
 

 


