
Anonymous
voting using
zero-knowledge
proofs

CS 291D: Blockchain and
Cryptocurrencies

Motivation
● Traditional voting requires trust

○ Correctness of votes cast, counting and result declaration

● Electronic voting
○ Identities of voters revealed
○ Correctness of vote aggregation

● Voters maybe influenced
○ Knowledge of distribution of cast votes
○ Contestants know identities of voters

● Verifiable and anonymous voting
○ Can be used in e-voting scenarios or in consensus protocols for leader election
○ Fair and unbiased
○ Existing approaches either assume a trusted broadcast channel do not provide

verifiability

Problem Definition
● Anonymous leader election protocol in distributed consensus

○ Conceal the vote of each participant from all other participants except the contestant of
choice

● Setup:
○ Set of participants
○ Set of contestants

● Honest majority
○ For t malicious participants, system has at least 2t+1 participants

● Constraints: Anonymity, Verifiability

Threat Model
● Active setting

○ Malicious adversary can arbitrarily deviate from the protocol

○ Eg: vote multiple times, impersonate other participants

● Public broadcast channel is tamper free

● No collusion between any parties

● Each participant can assume one (or both) of the following roles
○ Voter - vote, verify proofs

○ Contestant - voter actions + count votes, generate proofs

Our Protocol - Overview

Our Protocol - Details
● Each phase runs for a predefined time window
● Phase 0:

○ Public key cryptosystem to send private messages on the blockchain
○ Participant is identified by its pk
○ Broadcast without signatures at the start

● Phase 1:
○ We use factorization problem (RSA) as a puzzle
○ Participants publish a product from the sampled prime pair with a signed message*
○ Contestants broadcast candidacy

Our Protocol - Details
● Phase 2:

○ Voter encrypts their factors with the public key of contestant they vote for
○ Votes are broadcast on blockchain

● Phase 3:
○ Each contestant retrieves all of the vote messages from the blockchain and tries to

decrypt them to check if the vote was for them, if so, retrieve the factors (x)
○ The contestant with enough number of votes (determined by a threshold) claims victory
○ Contestants compute public input (product of all puzzles) and produce a proof showing

enough number of distinct factors

Our Protocol - Details
● Phase 4:

○ Voter computes the public inputs namely the number of voters and the product of all the
factors published by the voters on the blockchain

○ Verify the zkSNARK using these two pieces as public inputs
○ Additionally the following are checked:

■ Number of factor pairs is more than half the number of voters
■ No factor is repeated
■ No factor is trivial

Malicious Participants
● Voter

○ Vote/broadcast product multiple times
○ Encrypt incorrect factors
○ Broadcast unencrypted factors
○ Verify false proof

■ Compute N incorrectly
○ Do not vote (Node failure)

● Contestant
○ Broadcast false proof

■ Compute N incorrectly

Implementation Details
● cryptography for encryption, decryption, signature and verification

○ RSA 2048 bit keys, RSA-OAEP padding for encryption, RSA-PSS padding for signatures

● pysnark for zero knowledge proofs
○ Converts high level python into R1CS and uses libsnark in the backend for zero

knowledge

● Ethereum (geth) for tamper-free public broadcast channel

Evaluation (time)

a/na: anonymous/non-anonymous ½: no. of contestants c/v: contestant vs voter

Evaluation (time)

a/na: anonymous/non-anonymous ½: no. of contestants c/v: contestant vs voter

Evaluation (time)

a/na: anonymous/non-anonymous ½: no. of contestants c/v: contestant vs voter

Evaluation (data)
Scenario Data sent (bytes) Data received (bytes)

a_2_c 5694 7199

a_2_v 1505 7199

a_1_c 5690 6933

a_1_v 1243 6933

na_2_c 24 48

na_2_v 24 48

na_1_c 24 37

na_1_v 13 37

a/na: anonymous/non-anonymous ½: no. of contestants c/v: contestant vs voter

An Alternate Approach
● Multi-key FHE

○ Common FHE public key
○ Each participant generates their private key

● Voter
○ Vector (of length number of contestants) of votes
○ Encrypts the vote vector under the common FHE public key and broadcasts

● Aggregator
○ Participant chosen in a round robin manner
○ Performs homomorphic addition of all encrypted vote vectors

● Decryption
○ Threshold decryption by an honest majority

● Verifiability in zero knowledge
○ Correct vote vectors
○ Correct aggregation of vote vectors

Conclusions
● Approach 2 is more appealing with complete anonymity but hard to

encode FHE evaluation in a zero-knowledge proof
● Implementation limitations

○ pysnark uses libsnark as a backend using SWIG
○ Cannot handle more than 32-bit inputs
○ Small experiments due to time and infrastructure limitations

● Going forward
○ Implementation with libsnark bypassing pysnark

