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Abstract

The goal of compressive sensing (CS) is to recover a compressible signal from a
limited number of measurements. In many cases, one could levitate the existing
structure within the signal to improve the efficiency of CS, leading to even fewer
measurements [1]. Many existing methods integrate into the CS solver an oracle
that, based on the structure of the signal, limits the possible search space of the
algorithm [1][5]. However, the oracle is extremely structure-dependent in that
it needs to be designed specifically for the structure at hand, often with strong
assumptions. Moreover, when the underlying structure is complex, designing a
corresponding oracle deems intractable. In this project, we consider solving a CS
problem as a sequential decision making process, where in each step, an oracle-
agent minimally alters the current estimation of the solver such that it complies
with the underlying structure. The structure, generally represented as a graph, is
not available to the agent beforehand and therefore needs to be learned.

1 Introduction

The Shannon-Nyquist sampling theorem laid the theoretical foundation of signal recovery from its
measurements. The theorem states that a signal can be reconstructed effectively if the sampling rate
is at least twice the maximal signal frequency. In many applications such as radar imaging, coping up
with the sampling rate required by Shannon-Nyquist theorem is hard as it needs a large storage space,
high power consumption or large sensing time.

In transform compressive systems, the signal is effectively transformed into a low dimensional space
by re-representing the signal using a sparse and compressible coefficients α in basis expansion
x = ψα where x is the original n-dimensional signal and ψ is the N ×N basis matrix. α is sparse
if it can be well approximated by a vector with at most k << N non-zero entries. We say that α is
compressible if in the descending sorted list of coefficients of α the last n− k coefficients rapidly
tend to zero.

For sparse or compressible signals, the theory of Compressive Sensing goes beyond the Shannon-
Nyquist theorem and states that the signal can be effectively reconstructed using much fewer inco-
herent (non-periodic) measurements. Mathematically, the measurements y = φx = φψα, where
the rows of M ×N matrix φ are the measurement vectors. Here, the matrix φψ is rank deficient,
and loses information in general but for sparse and compressible signals it preserves the distance
between the vector representation of such signals known as the restricted isometry property (RIP). It
is shown that with a high probability, RIP holds for a large class of random matrices. K-sparse and
compressible signals are known to be robustly recoverable with O(K log(N/K)) measurements. [9]
provides a good survey of known algorithmic techniques used in compressive sensing.

[1] introduced Model Based Compressive Sensing where the sparse signal follows a certain prede-
termined structure. This effectively reduces the space of possible sparse signals and gives a robust



recovery using a small number of samples. For example, [1] considers signals on a rooted connected
tree and shows that such signals can be recovered with O(M) measurements. Several follow-up
works [5, 10, 11, 12] considered other structured models such as connected components in a graph,
[13, 14]. One issue with such model based compressive sensing techniques is that the structure needs
to be hand-crafted with the available domain knowledge about the signals. Such a handmade design
might not be possible for complex signals or signals with limited domain knowledge. Hence, in this
work, we consider the problem of learning structure in the input signal without a given prespecified
model.

2 Related Work

The study of compressive sensing has many impressive applications, such as rapid magnetic resonance
imaging [16], single-pixel camera [18], and UAV systems. One of the popular assumptions on the
input is sparsity [17]. Several approaches have been proposed for sparsity-based signal recovery.
These approaches include alternating minimization [19], methods based on convex optimization
[20], and Iterative Thresholding [21]. Although sparsity is the most common input structure, it is
natural to study if this notion can be further refined in order to capture more complex structures. Such
an approach is applicable in many applications; for example, large wavelet coefficients for natural
images can often be organized as a connected tree, point sources in the astronomical images tend
to form a cluster, and active genes can be arranged as a group. These structured sparsity models
have been shown to achieve faster algorithms along with improved sample complexity for statistical
learning and sparse recovery. Hence, recently, several sparse recovery model with distinct structural
properties have been studied – block-sparsity [22], tree sparsity [1,23], cluster [5,24], and graph
models [1,5,25].

Recently, there has been work on using machine learning and deep-learning models for sparse
compressive sensing [3,6, 28]. [3] developed the first generative model, which outputs the unknown
signal x. Here, the goal is to model the real-life distribution of x. In follow-up work, [6] developed a
task aware generative model with a focus on the recovery task and showed a significant improvement
over [3]. [29] applied neural gradient descent for compressive sensing. In another line of work, [26,
27] developed classification models on compressed data itself.

In this work, we develop a reinforcement learning based model. In general, reinforcement learning
has been employed on a wide variety of optimization problems [32,33]. Notice that our problem
of learning the unknown structured input distribution on a graph is a combinatorial optimization
problem. Reinforcement learning based models have shown a recent success in a wide variety of such
problems [2,4,8]. In particular, models achieve impressive accuracy for combinatorial optimization
problems on graphs [4,7,8,30]. Following this path, our work also uses a reinforcement learning
approach.

3 Methods

Many existing CS algorithms, such as Iterative Hard Thresholding (IHT), iteratively check the
differences between the ground-truth measurements and the measurements obtained with the current
estimation of the original signal. The small differences are pruned out and the estimation is updated
along the directions of the large differences. In model-based CS, the small differences are also pruned
but in a way that complies with the underlying model. Model-based pruning requires prior knowledge
of the signal model and designing the pruning function. Our method can be described as “learning to
prune”, which accounts for the cases where the signal model is not known or well-defined. Recently,
there has been a surge in work on machine learning for combinatorial optimization problems, in
which reinforcement learning (RL) is a well-adapted learning paradigm due to the lack of labels
during training.

We chose to learn pruning functions (step 3, Figure 1) of the Model-based IHT algorithm because
of its simplicity. For the signal, we chose to optimize graph signals because of their generality and
their ability to represent a variety of structured signals. Note that the pruning itself is an optimization
problem, so in the context of machine learning for combinatorial optimization, our method can
both be considered a helper function for the overall optimization algorithm (IHT) and an end-to-end
optimization function (pruning).
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Figure 1: Model based IHT [1]

In this project, we have gone through a total of 3 development cycles, during each of which substantial
changes were made to improve the performance of the model. In the last cycle, the model was able to
learn to “imitate” the choices made by the IHT algorithm but not able to go beyond and learn the
underlying structure of the signals. Following this, we will describe our design choices for each cycle
by specifying the corresponding state, the action, and the reward function of the RL model. In all
cycles, the graph signal embeddings were learned via the graph neural network (GNN) defined in
[31], and the RL model was a Deep Q-learning network.

3.1 Cycle 1

In this cycle, the state of the system is the current state of the IHT optimization step and each pruning
step corresponds to a single action. Given a graph G = (V,E), let X be the signal and X̂i be the
estimation of the signal at the ith iteration. An action selects a set Si = {v ∈ V |x̂i,v 6= 0} to zero out
(pruning). IHT follows and updates the next estimation X̂i+1 based on the current pruned estimation.

We use a GNN to produce the embedding µv for each node v ∈ V , of which x̂i,v is the only input
feature. The state embedding µX̂i

is SUM{µi,v|v ∈ V }. Similarly, the action embedding µSi
is

SUM{µi,v|v ∈ Si}. The concatenation [µX̂i
, µSi

] is passed into the deep Q-network to output the
expected long term return by following the standard RL policy. At each step, the immediate return is
1

||d|| where d is the residual vector (step 4, Figure 1).

An apparent drawback of the above design is the size of the action space, which scales exponentially
with larger graphs. Moreover, given the enormous amount of possible actions, the convergence of the
deep Q-network becomes intractable since the number of learning scenarios that we need to generate
is many folds larger.

3.2 Cycle 2

In this cycle, we tackled the intractability of the previous design by some major updates to the
definitions of states and actions. Instead of choosing a single set of nodes to zero out in one pruning
step, we split the pruning into multiple greedy steps. As such, an episode is defined over a single
pruning step instead of the whole IHT optimization. We also need to redefine some notations from
Cycle 1.

Given a graph G = (V,E), let X be the signal and X̂ be the estimation of the signal at the beginning
of the episode, i.e, a single pruning step of IHT. Over multiple greedy steps, we will build a set of
nodes S to be pruned out at the end of the episode. In this case, Si denotes the set of nodes after the
ith greedy step.

Similarly to those of Cycle 1, µv is the embedding of node v ∈ V , µX = SUM{µv|v ∈ V } is
the graph embedding, and µSi = SUM{µv|v ∈ Si} is the current pruned-out set’s embedding. At
each greedy step, we pick a candidate node c such that c ∈ V \Si and x̂c 6= 0 to append Si. The
concatenation [µX̂ , µSi

, µc] is passed into the deep Q-network to predict the long-term cumulative
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reward for adding c to Si. After each step, the reward is the reduction of ||d|| compared to that of the
previous step.

Even with the simplification we added in Cycle 2, the performance of our method was still significantly
worse than that of IHT. In Cycle 3, we made an adjustment that ensures our method will be at least as
good as IHT.

3.3 Cycle 3

In this cycle, we exploited the fact that IHT already makes decent choices and the model should only
try to improve based on those. As a result, we initiate Si to the set of pruned-out nodes chosen by
IHT. At each greedy step, the model will swap a node in Si with another non-zero node. There is an
option for the model to pick “no action”, which simply means that it agrees with IHT’s choices.

Because of the swapping actions, the candidate node c from Cycle 2 does not make sense anymore.
Instead, an action is defined by a pair of nodes that includes a to-be-added node a, a ∈ V \Si, x̂a 6= 0,
and a to-be-removed node r, r ∈ Si. The concatenation [µX̂ , µSi , µa, µr] is passed into the deep
Q-network to predict the long-term cumulative reward for swapping r with a. If “no action” is
selected, then µr = µa = 0.

4 Experimental Results

4.1 Dataset

We generated a synthetic dataset of graph signals where the structure of the signals follows a simple
predefined model. Each graph was randomly generated according to the Erdős–Rényi model. We
randomly selected a small portion of the nodes to assign non-zero values such that the connected
components of these nodes form line graphs. The size of each graph, the proportion of non-zero
nodes, and the value of non-zero nodes all follow Gaussian distributions. In total, 200 such graphs
were generated.

4.2 Recovery performance

We now present our results for cycle 2 and cycle 3 (section 4.3). For cycle 1, due to the large action
space, we could not sufficiently train our Q-learning agent.

Training. We train each model for at least 5000 episodes (some of our models are trained for 10000
episodes). Our other default parameters are: γ = 0.9 (learning parameter), εstart = 0.9, εend =
0.05, εdecay = 2500 (exploration threshold).

(a) (b)
(c)

Figure 2: Recovery scenarios for cycle 2. Blue represents plot for the model and olive represents plot
for IHT.

Cycle 2. Figure 2 presents a few scenarios that we have observed when comparing the performance
of the model from Cycle 2 with that of IHT on the synthetic dataset. In each plot, the norm of the
residue vector is plot against the number of optimizing iteration. The norm is 0 when the signal is
perfectly recovered. Figure 2b shows the most dominant scenario in which there is little recovery by
the RL model as compared to that of IHT. Since the curve produced by the RL model is considerably
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Figure 3: The average difference between the norm of the residual vector produced by the DQN
model and the one produced by IHT over 20 steps of optimization. Each curve corresponds to a
different level of exploration.

Table 1: The effect of Exploration on Performance
Exploration Norm Difference (NN-IHT)

25% 45.385
50% 13.714
75% 18.931

smooth, we could say that the small recovery did not happen by chance but by the model’s learning,
even though the learning is quite limited. Occasionally, the RL model performed similarly or even
better than IHT, as shown in Figure 2a. In a few other cases, the RL models started similarly as IHT
did but got off track and stuck in a recovery loop, as shown in Figure 2c.

Cycle 3. Our default exploration rate is set to 50 percent for this case. We observed that our model
predominantly imitates IHT, and the two graphs are almost identical. Hence, in terms of available
options in each step, the model mostly picks “no action". We omit the figure due to space constraints
(and due to the similarity of IHT and model behavior). On the positive side, our model do not behave
as model from Cycle 2 in Figure 2b or Figure 2c. But on the other hand, the learning is still limited,
and the model outperforms IHT only in a handful of cases. We believe that since we only ‘swap’
one pair of nodes as our action, the model’s capacity to understand graph patterns is limited. A way
around this would be to a ‘swap’ with multiple nodes simultaneously, but such a model would incur
high computation cost.

4.3 The effect of exploration

We conducted some experiments on the effect of the exploration-exploitation problem on the learning
of our model. The number of exploration episodes within the 5000 training episodes is varied. In
particular, we tested the model when 25 percent, 50 percent, and 75 percent of the training episodes
are dedicated for exploration and recorded the difference between the norms of the residual vector d
produced by the DQN model and IHT. The results are reported in Figure 3 and Table 1.

In general, more exploration is beneficial up to some point. By increasing the percentage of explo-
ration episodes from 25 to 50, we improved the performance of the model significantly. However, the
performance slightly deteriorated when we increase the percentage to 75.

5 Conclusion and Future Work

The preliminary results we obtained from this project suggested that, with a certain amount of training,
an RL method should perform equally to an existing algorithm for sparse recovery. However, going
beyond and learning the underlying model of the signals is still a significant challenge, even on the
small and simple synthetic graph signals that we generated. Given that RL is a generally demanding
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learning paradigm, multiple factors might have hindered our model from performing at the desired
level, suggesting future improvements.

In terms of training, since each episode corresponds to a different graph and the number of actions at
each step is quite large and diverse, it is natural that the deep Q-network requires a large number of
training episodes. However, due to the project’s time constraint, we were only able to train for 5000
to 10000 episodes. Note that it is common for a deep RL model to be trained on millions of episodes.

In terms of representation, at the moment, the complexity of our model is still limited. A more
complicated underlying signal model may require a more capable graph representation learning
method. The GNN currently used in our project is quite simple in that it may not be able to capture
the graph structures effectively. Moreover, we only used a single node feature as the input into the
GNN, while successful RL methods for combinatorial optimization on graphs often develop several
meaningful features based on the problem.

In conclusion, the outcome of our project is limited yet promising. Further developments that address
the limitations mentioned above are necessary to improve the performance.
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